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The aim of our studies was to further develop the assays of fecal fat and urinary calculi. 
The development consisted of the investigation of the applicability of new infrared 
spectroscopic methods for routine use in the clinical laboratory. Because most of these 
assays made use of authentic sample material, quantification of the analyte concentrations 
was often hampered, because of the complex sample matrices. Therefore, we also 
investigated the application of chemometrical methods for quantification of the analyte 
concentrations from the spectral results. We applied artificial neural networks and partial 
least-squares regression analysis for both calibration and prediction of the outcome of both 
kinds of assays. Furthermore, we gave some information about the pathophysiology 
background of our studies. 
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1. Pathophysiology 
 
1.1. Steatorrhea 
 
Introduction 
Digestion and absorption of nutrients in the gastro-intestinal (GI) tract is a complex process 
in which a great number of steps are involved. Normally, food is digested, followed by 
absorption of the nutrients into the bloodstream. The absorption mainly occurs in the small 
bowel area of the GI tract. In case of impaired absorption, malabsorption occurs, either 
because a disorder disturbs the digestion of food, or directly disturbs the absorption of 
nutrients from the small intestine. Malabsorption may occur for many nutrients 
simultaneously, or for specific nutrients such as carbohydrates, proteins, fats, or 
micronutrients (e.g. vitamins) separately. Sometimes, secondary nutritional deficiencies 
develop as a result of primary diseases. For example, malabsorption of fat may lead to 
impaired absorption of the fat soluble vitamin K, which in turn may lead to 
hypoprothrombinemia and bleeding disorders (1). Any combination of weight loss, diarrhea 
and anemia should raise suspicion of malabsorption. Laboratory studies can be useful in the 
diagnosis of impaired digestion, or absorption. Most of the laboratory tests used in the 
diagnosis of malabsorption syndromes will indicate the presence of an abnormal absorptive, 
or digestive process, but only a few tests can lead to a more specific diagnosis. Therefore, it 
is often necessary to make use of a combination of tests to increase the specificity of the 
test result. In this introduction, we will limit our discussion to the malabsorption of fat. The 
impaired absorption of fat leads to increased amounts of fat in stool, which is referred to as 
steatorrhea. The direct measurement of fecal fat is the most reliable laboratory test for 
establishing malabsorption, because increased fecal fat concentration is unequivocally 
associated with impaired absorption. Unfortunately, steatorrhea is not always present in the 
patients with malabsorption. 
 
Physico-chemical aspects and pathophysiology of intestinal fat absorption 
The total absorptive area of the small intestine is enormous (200 m2). Not only the length of 
the gut, but also the surface of this part of the bowel contributes to this. The surface is 
arranged in small projections, called villi. Each villus is composed of thousands of 
intestinal absorptive cells, which overlie a core of blood vessels and lymphatics (Figure 1). 
Each absorptive cell itself is further modified to increase its surface area by the projection 
of microvilli on its surface, called the brush border. In this way, the adaptations of the 
intestine increased the surface area over 40-fold, facilitating the absorption of molecules 
that have been made available by digestive processes. 
The motility of the bowel permits the nutrients to remain in close contact with the intestinal 
cells. Although the proximal intestine is the major absorption area for fat (monoglycerides 
and free fatty acids), the entire small intestine is involved in this absorption process (3). 
Most of the ingested dietary fats are in the form of long-chain triglycerides. These 
triglycerides are composed of both saturated (mainly palmitic and stearic acid) and 
unsaturated fatty acids (e.g. linoleic acid) and glycerol. About 30% of the dietary 
triglycerides, mainly medium-chain fatty acids, is digested by lingual and gastric lipase. 
The particle size of the bulk of the dietary lipid is largely decreased by the peristaltic 
contractions and temperature of the stomach (4).  
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Figure 1. Villus of the intestinal mucosa. The epithelial cells that cover the surface of the villus absorb dietary 
molecules. At the apex of each villus the cells are sloughed off (2). 

 
After a retention time of about 2–4 hours in the stomach, the partly digested food enters the 
duodenum. This process, together with the presence of acid, causes release of secretin and 
cholecystokinin, which in turn leads to a stimulation of the flow of bile and pancreatic 
juice. The pancreatic lipase acts at the oil-water interface of the emulsified triglyceride 
substrate. This emulsion is formed by mechanical moulding of fat in the gut in the presence 
of lipase, bile salts, colipase, phospholipids and phospholipase A2. Pancreas lipase, colipase 
and bile salts form a ternary complex, which generates lipolytic products from tri- and 
diglycerides (Figure 2). Under normal circumstances, more than 98% of all ingested 
triglycerides are hydrolyzed to monoglycerides and free fatty acids by this complex (5).  
Bile salts, which are synthesized by the liver and excreted by the gallbladder into the small 
intestine, not only play an important role in the digestion, but also in the absorption of fat. 
Bile salts are good detergents, having both polar (hydrophilic) and nonpolar (hydrophobic) 
groups that have the ability to lower surface tension. This enables the bile salts, to 
solubilize the free fatty acids, water insoluble soaps and monoglycerides. If the bile salt 
concentration in the lumen is high enough (Critical Micellar Concentration: 5–15 µmol/ml), 
the bile salts aggregate to form micelles. The fatty acids and monoglycerides enter these 
micelles to form mixed micelles. Then, the mixed micelles migrate to the absorbance sites 
of the intestine, where the fatty acids and monoglycerides are released from the micellar 
phase and enter the cell by diffusion. This unilaterial diffusion is promoted, because fatty 
acids and monoglycerides of long-chain fatty acids (≥C14) are promptly reesterified to 
triglycerides, upon entry into the mucosal cell. The esterification occurs by the interaction 
of the tryglycerides with apolipoproteins, cholesterol and phospholipid to form 
chylomicrons and very large density lipoprotein, which in turn are secreted into the 
intestinal lymph (Figure 2). 
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Figure 2. Diagram of intestinal digestion, absorption, esterification, and transport of dietary triglycerides. TG= 
triglycerides; FA = fatty acids; MG = monoglycerides; BS = bile salts (3). 

Most of the bile salts are absorbed in the distal ileum, to reenter the enterohepatic 
circulation. Although the digestion and absorption of dietary fat is not described in 
complete detail, it is apparent that the whole absorption process comprises a very complex 
series of events. Normally, the unabsorbed dietary residue in feces is very small. 
Disturbances of any of the described events may lead to decreased fat absorption and 
subsequently give rise to an increased amount of fat in the stool. Therefore, many disorders 
can result in stools that contain poorly digested nutrients. Since they have diarrhea in 
common, these disorders are generally lumped together under the title malabsorption 
syndrome. These disorders may have vastly different etiologies as noted in Table 1. 
Although this table is far from complete, it shows that there are many etiologies causing 
steatorrhea. Therefore, it is important to distinguish between digestion and absorption. 
 
Diagnosis of steatorrhea 
The analysis of fecal fat is the most definite laboratory test for establishing the presence of 
steatorrhea, but it is not appropriate for the delineation of its cause. Under physiological 
conditions, about half of the fecal fats are non-absorbed, non-dietary fats, also called 
metabolic lipids. From these metabolic lipids, significant amounts (~2 g/day) derive from 
intestinal bacteria and epithelial cells, normally sloughed from the intestinal mucosa (8). 
Furthermore, a certain fraction of total fecal lipids is composed of unsaponifiable matter 
such as sterols (mainly cholesterol and coprostanol). On a lipid-free diet, the fecal fat 
output falls to values between 1 and 4 g/day, representing the sum of non-dietary fat (9). 
Dietary lipid consists of 92–96% triglycerides (10;11), whereas the remainder consists of 
cholesterol esters, plant sterols and phospholipids (12). In normal individuals, a daily 
dietary intake of up to 150 g lipid results in a relatively little change in total lipid excretion. 
Therefore, fecal fat excretions greater than 7 g/day is considered to be abnormal in adults 
consuming a usual Western diet with a daily intake of 50 to 150 g lipid. Children up to 6 
months normally excrete 0.3–2.0 g fecal lipid per day (8;9). Patients with fecal lipid ≥20 
g/day are suspected to suffer from pancreatic insufficiency, whereas fecal lipid contents 
>9.5 g/day but <20 g/day is thought to be the result of malabsorption of fat in the intestine 
(13). Often, the percentage of total lipid absorption is calculated. This percentage or 
coefficient of fat retention is calculated by:  
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%100 x
ingestedfat 

excreted)fat ingested(fat 
(%) absorption lipid

−=   

 
To determine the percentage of total lipid absorption, the method is only claimed to be 
valid if at least 50 g of lipid is ingested per day (14). If the intake falls below 50 g lipid/day, 
the proportion excreted dietary lipid to non-dietary lipid becomes to small, to be important. 
 
 
Table 1. Classification of the malabsorption syndrome (3). 

Inadequate digestion: 
 following gastrectomy (6) 
 exocrine pancreatic insufficiency (7): 
  chronic pancreatitis 
  cystic fibrosis 
  pancreatic carcinoma 
  pancreatic resection 
 Zollinger-Ellison syndrome (ulcerogenic tumor of the pancreas or gastrinomas, 
    which cause inactivation of the pancreatic enzymes 
    by increased amounts of acid) 
 
Reduced intestinal bile salt concentration: 
 liver disease 
     abnormal bacterial proliferation in the small bowel, causing deconjugation of bile  
 salts 
 interrupted enterohepatic circulation, such as ileum resection 
 sequestration, or precipitation of bile salts by drugs (e.g. cholestyramine) 
  
Primary mucosal absorptive defects: 
 celiac disease 
 tropical sprue 
 giardia lamblia infection 
 mastocytosis 
 radiation enteritis 
 cystinuria 
 
Impaired lymphatic transport: 
 a-betalipoproteinemia 
 obstructions 
 cardiovascular disorders 
 
Accelerated passage through the intestine: 
 short bowel syndrome  
 hyperthyroidism 
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The clinical usefulness of the quantitative analysis of fecal fat may be influenced if no 
standardized diet is applied during stool collection (see percentage fat retention). It has 
been noted that fecal fat excretion nearly linearly increases with the intake of dietary fat in 
patients with steatorrhea (24). Dinning et al. (25) described a standardized diet containing 
100 g fat per day, to ensure sufficient accuracy of the test results. Another diet, containing 
135 g lipid per day for lipid balance studies, was described by Nothman (9). Patients should 
be instructed carefully, in order to make them understand the importance of consuming the 
whole meal. After starting consumption of the diet, a 24–48 hour acclimatization period is 
needed preceding stool sample collection. Since the intestinal motility is variable, causing 
erratic frequency of fecal output from day to day, the results on single random sample 
analysis are generally considered to be useless. Therefore, the variation should be 
minimized by pooling at least three consecutive days collections (9). Fecal samples can be 
kept for up to 4 days at refrigerator temperatures (9). If separate lipid classes have to be 
determined, the fecal samples should be frozen as soon as possible after collection (9). 
Representative sampling is of general concern for any kind of analysis, but special attention 
should be given to the homogenization of the stool samples due to their inherent 
inhomogeneity. Despite of this homogenization, statistical averaging of the outcome of 
duplicate, or even triplicate samples of the pooled stool collection is often necessary (26).  
As stated above, the impaired intestinal absorption of fat is only one of the many intestinal 
function disorders. More extensive descriptions are out of range of this consideration, but 
can be found elsewhere (3). 
 
 
1.2. Urolithiasis 
 
Introduction 
Urinary calculi have plagued man over the centuries. Today, approximately 5 % of the 
population of the western world is thought to have formed at least one renal stone at the age 
of 70 years, from which they may suffer at some point in their lives (27-29). The mean age 
of the patients is about 45–50 years and approximately 60–70% of them are male (30-32). 
In the American population, stones are even three to four times more common in men than 
in women (30). In Western countries the portion of the population that is affected annually 
is about 0.5%. The yearly incidence of patients presenting to the hospital with urinary stone 
colic is about 0.1%–0.2% of the population (33;34). In 1% of the patients with urinary 
calculi the course of the disorder is without symptoms. Urinary calculi, or renal stones, may 
occur in different parts of the urinary tract, such as the kidney, renal pelvis, ureter, or 
urinary bladder (vesicle). In 80% of all cases, the urinary calculi will pass the urinary tract 
spontaneously, if the stones have a diameter smaller than 8 mm. Vesicle calculosis (bladder 
stones) are found fairly widespread in Asia. Bladder stones, due to malnutrition in the very 
early years of life, is currently frequent in areas of Turkey, Iran, India, China, Indochina 
and Indonesia, although the incidence is decreasing (in proportion) as social conditions 
gradually improve. At the beginning of the 20th century and beyond bladder stones were 
relatively frequent in Europe also, but in the course of the last 100 years, there has been a 
gradual decrease in its incidence, whereas the upper tract kidney stones became more 
common. This trend, defined as "stone wave", has been explained in terms of changing 
social conditions and the consequent changes in eating habits (more animal meat and fat). 
In Europe, Northern America, Australia, Japan, and, more recently Saudi Arabia, affluence 
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has spread to all social classes, and with it the tendency to eat "rich" food in large quantities 
(35). In these affluent societies the kidney is the most common site of urinary stones in the 
urinary tract, estimated to 58% of all cases (36). Stones, originating from the kidney, may 
traverse the ureter symptomless, but most of the time this passage is accompanied with 
severe pain and bleeding. Stones in the distal portion of the ureter or the bladder cause 
frequency, urgency and dysuria that may be confused with urinary tract infections. 
Classical symptoms of an acute renal colic are excruciating flank pain spreading 
downwards and anteriorly toward the ipsilateral loin and genitals. Renal colic is also often 
accompanied by nausea and vomiting, because the pain is so severe. Patients are often 
restless, tossing and turning in a futile attempt to find a comfortable position, which 
symptoms are also referred to as a renal colic (27).(30) Another problem of renal stones is 
that they tend to recur. The recurrence rate is about 50% in 10 years, and 75% in 25 years 
(34). These serious implications of urinary lithiasis cause high socio-economic cost, which 
justifies the investigation of its creation and prevention of recurrences. Therefore, much 
effort has been invested in the research of urinary calculi, comprising a great number of 
aspects such as the etiology, or pathogenesis of stones, the physico-chemical base of stone 
formation, risk factors, epidemiology and dietary, or medical treatments of urinary calculi. 
However, despite intensive research the knowledge of stone pathogenesis, which is the 
basis of every rational stone metaphylaxis, has remained rather scanty. Stone formation in 
most patients is probably caused by a coincidence of different environmental and genetic 
factors. 
 
Pathogenesis, including risk factors 
Urinary stones usually arise because of disturbance of a delicate balance. On the one hand 
the kidney must conserve water, on the other hand it is supposed to excrete waste and 
materials that have a low solubility. These two opposing requirements must be balanced 
against one another during adaptation to a particular combination of diet, climate and 
activity. The equilibrium is changed to some extent by the fact that urine contains 
substances that inhibit crystallization of salts, and others that bind ions into soluble 
complexes. These protective mechanisms however are less than perfect. When the urine 
becomes supersaturated with insoluble materials, due to e.g. a combination of excessive 
excretion rate and excessive water conservation, crystals form and may grow and aggregate 
with one another to form a stone (27). Except for potent inhibitors, human urine also 
contains a number of promoters (albumin, globulins, matrix substance A). A list of 
promoters, inhibitors and other predisposing risk factors is given in Table 2. The 
predominant risk factor is poor hydration. At least this partially explains the increased 
incidence of renal stone formation in hot climates (37). In general the etiology of stone 
formation comprises genetic factors, environmental factors, such as dietary causes (e.g. 
hyperuricosuria), or urinary tract infection. The most commonly occurring component of 
stones is cationic calcium, caused by idiopathic hypercalciuria which probably has a genetic 
origin and occurs in 50–55% of all stones (27;38). 
 
Physico-chemical factors 
The physico-chemical basis of stone formation is mainly supersaturation. If a solution is in 
equilibrium with crystals of e.g. calcium oxalate, the product of chemical activities of 
positive calcium ions and negative oxalate ions in solution is called equilibrium solubility 
product. If crystals are removed and than either calcium or oxalate is added to the solution, 



Introduction 

 

 
10 
 

the activity equilibrium solubility product will increase, but the solution remains clear. 
Such a solution is considered metastably supersaturated. Alternatively, if new calcium 
oxalate seed crystals are added, the crystals will grow in size (nucleation). If a critical point, 
called the upper limit of metastability, is reached, the solid phase begins to develop 
spontaneously (27;39). 
Nucleation is also considered to be a physico-chemical factor in stone formation. If urine is 
supersaturated, the crystals normally form instable clusters of crystals. However, clusters of 
at least 100 crystals can remain stable, because attractive forces balance surface losses. 
These clusters, called nuclei, can create a permanent solid phase if the urine is frequently 
supersaturated. If supersaturated urine is seeded with nuclei containing crystals of the same 
structure, this is called homogeneous nucleation, whereas seeding of supersaturated urine 
with foreign nuclei is called heterogeneous nucleation. Sodium hydrogen urate, uric acid 
and hydroxylapatite crystals often serve as heterogeneous nuclei that permit calcium 
oxalate stones to form even though urine calcium oxalate never exceeds the metastable 
limit. The previously mentioned inhibitors (Table 2) slow down crystal growth and 
nucleation of calcium phosphate and calcium oxalate (27). Struvite, cystine and uric acid 
stones often grow too large to pass the ureter. These stones gradually fill the renal pelvis to 
form staghorn calculi. Calcium stones often grow in the urinary papillae, some of them 
break loose and cause colic. 
 
Composition of urinary stones 
The majority of all urinary stones contains calcium (31;32;40;41). Table 3 shows the 
incidence rates and etiology of the most commonly occurring components in urinary 
calculi. The distribution of these incidence rates (%) is based on the incidences of the 
components in mixed stones, as found in the St Elisabeth Hospital in Tilburg, in the 
southern part of the Netherlands (31). The incidence rate of 70-80% of calcium oxalate 
(Table 3) was similar to results obtained from an own study (University Hospital in 
Groningen) and a study in France (32). We presume that these incidence rates are the same 
in most Western countries. However, the distribution of the incidence rates may differ in 
certain regions. 
 
Diagnosis and analysis 
Urinary stones can also be detected by means of abdominal radiographic studies, which 
however may miss many stones. Therefore X-rays are often followed by an intravenous 
pyelogram (IVP), which requires an injection of dye. Unfortunately, this dye may cause 
allergic reactions. Another detection method is renal ultrasound, which sometimes misses 
stones in the lower half of the ureter. The newest technique is spiral-computed tomography 
(spiral CT). It is a non-invasive method that produces images of the urinary tract by X-rays 
(30). 
 
Most diagnostic protocols include the analysis of biochemical parameters in 24h urine 
collections for the identification of risk factors of urinary stones (32;34). Normally the 
output of calcium, uric acid, oxalate, citrate, magnesium and urea (as reflection of daily 
protein intake) are measured in 24h urine. Most centers also measure the urinary cystine 
output. Furthermore the urinary pH is often determined, together with the 24h urinary 
volume. In case of high pH (8–9), the urine is sometimes tested for the presence of bacterial 
infection with Proteus species. In addition, the serum concentrations of calcium, uric acid 
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and the parathyroid hormone are often measured. Sometimes the assays are repeated after 
dietary restriction.  
 

 

Table 2. Promoters, inhibitors and pre-disposing risk factors of stone formation (37). 

Promoters 
 Albumin 

 Globulins 

 Matrix substance A  

 

Inhibitors 
 Magnesium 

 Citrate 

 Pyrophosphate 

 Tamm Horsfall glycoprotein 

 RNA 

 

Predisposing factors 
Preurinary 

 Family history 

 Hot climate 

 Stress 

 Decreased fluid intake 

 Protein-rich diet 

 Immobilization 

 

Urinary 

 Increased Ca++, urate, oxalate, pH 

 Decreased Mg++, volume, citrate 

 

Metabolic disorders 

 Primary hyperparathyroidism 

 Renal tubular acidosis type I 

 Hereditary hyperoxaluria 

 Medullary sponge kidney 

 Cushing’s disease 

 Cystinuria 

 Milk-alkali syndrome 

 

Bacterial infection 

 Proteus infection                                              
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The analysis of the composition of the calculi is important for proper treatment of patients 
with urolithiasis, especially in case of recurrence of stones. The compositions of urinary 
stones can be determined by means of wet-chemical analysis, infrared spectroscopy, or X-
ray diffraction. Unfortunately, wet-chemical analysis is only a semi-quantitative assay. 
Therefore, infrared spectroscopy and X-ray diffraction are gradually replacing the less 
specific chemical assay for stone analysis. More detailed information upon the analytical 
methods is given in paragraph 2.1.2 and 2.2. of the introduction. 

 

Table 3. Incidence rate (%) and etiology of the most commonly occurring components of 
urinary calculi. The incidence of the components expresses the presence of the component 
in mixed stones, as found in a hospital in the southern part of the Netherlands (31). 

Component 
name 

Formula / 
Composition 

Incidence 
rate (%) 

 
Etiology (41) 

Whewellite 
 

CaC2O2.H2O / 
Calcium oxalate 

75.0 Hyperoxaluria, hypercalciuria, hyperuricosuria, 
hyperuricaemia and primary hyperparathyroidism 

Weddellite 
 

CaC2O2.2H2O /  
Calcium oxalate 

70.7 See whewellite 

Carbonate 
apatite 

Ca10(PO4)(CO3OH)6(OH)2 

/ 

Calcium phosphate 

48.9 Hypercalciuria, renal tubular acidosis (RTA), 
urinary tract infection (not essential), 
hyperphosphaturia and immobilization 

Brushite CaHPO4.2H2O / 
Calcium hydrogen 

phosphate 

13.0 Hypercalciuria, hyperphosphaturia, RTA and 
immobilisation  

Struvite MgNH4PO4.6H2O / 
Magnesium ammonium 

phosphate 

4.3 Urinary tract infection with urease producing 
bacteria 

Uric acid C5H4N4O3 3.3 Hyperuricosuria and hyperuricaemia 
Ammonium 
urate 

C5H7N5O3 1.1 Hyperuricosuria and urinary tract infection 

Cystine C6H12N2O4S2 1.1 Cystinuria 

 
Medical management of urinary stones 
In most cases stones are lost by time and fluid, allowing passing the stone on its own. 
However patients with stones larger than 6 mm may often need help. In the past, urinary 
calculi could only be removed by operating the kidney, renal pelvis, or ureter. Today, 
alternative methods are available. Stones can be fragmented in situ by exposing them to 
extracorporal shock wave lithotripsy (ESWL). The patient is submerged in a water bath, 
after which high-energy sound waves are focused at the center of the stone by means of a 
parabolic reflector. Subsequently, the stones are fragmented with the use of laser energy, 
electromagnetic or electro-hydraulic transducers. In this way, most stones are reduced to 
powder that passes through the ureter to the bladder. A second method is percutaneous 
ultrasonic lithotripsy. With this method a cystoscope-like instrument is passed into the renal 
pelvis, where an ultrasonic transducer disrupts the stones. The fragments are washed out 
directly. A third method is ureteroscopy, by which a cystoscope-like instrument is passed 
through the bladder into the ureter (27;30). 
 
Rational stone prophylaxis is important, especially in all cases of stone recurrence. 
Conservative treatment should always be offered to patients with stones, whether or not 
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additional treatment with drugs or diets is necessary. Traditional treatment always includes 
high fluid intake of at least 3L/day to ensure a minimum urine volume of 2 L/day, 
irrespective of the composition of the urinary stone (42). The composition of the stone, as 
well as the frequency and extent of severity of stone formation determine the kind of 
additional treatment, which may consist of dietary advise, or medication with drugs. With 
respect to nutrition many interesting studies are available, such as a study of the effect of 
drinking French mineral water containing calcium and magnesium (43). One of the 
remarkable recent findings of new research on urinary stones, is that dietary calcium 
restriction possibly is detrimental in prevention of stone formation and in fact seems to 
make things worse (30). Nevertheless, a more extensive review with respect to additional 
treatment is out of scope of this introduction, but can be found elsewhere (27;34). 
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2. Analytical methods 
 
2.1. Reference methods 
 
2.1.1. Fecal fat analysis: 
 
2.1.1.1. Van de Kamer method: 
 
Introduction 
The titrimetric Van de Kamer method is the most popular method for the determination of 
fecal lipids. As a result of a comprehensive study of Van de Kamer as described in his 
thesis (15), the method was first published in 1949 by Van de Kamer et al (16). Even 
though the method exists for a very long time, it is still used by a great number of 
laboratories and is considered by many as the gold standard procedure for the determination 
of fecal fat. The method is intended for the quantitative measurement of neutral lipids 
(unsplit), as well as medium- and long-chain fatty acids (split). 
With the most common procedure (method A), the determination of the fat content in a 
homogenized stool sample is performed without drying the sample. The lipids of a 
weighted amount of stool sample are saponified by boiling under a reflux condenser with 
concentrated potassium hydroxide in ethanol. After cooling down the alkaline solution, HCl 
is added to liberate the fatty acids from their salts (soaps). After cooling again, ethanol is 
added, and the fatty acids are extracted with petroleum ether. Subsequently, the liberated 
and extracted fatty acids are titrated in a fixed amount of the extract with isobutyl alcoholic 
KOH and thymol blue as indicator. In this way the split and unsplit fat is measured 
simultaneously as total fat. The fecal lipid content is normally expressed in mass percent 
(g%), or g/day wet weight. 
 
Van de Kamer also described an alternative procedure (method B) for the determination of 
split and unsplit fat separately. To measure the amount of split fat, the stool sample is not 
treated with alkali for saponification, but boiled with diluted HCl to convert the fecal soaps 
into free fatty acids. After extraction with petroleum ether, the fatty acids are quantified by 
titration. After titration an excess, but known amount of isobutyl alcoholic KOH is added 
and the unsplit fat is saponified by boiling. The excess of alkali is titrated with HCl and 
thymol blue as indicator, from which the amount of unsplit fat can be quantified. With this 
method, the free fatty acid index related to the amount of ingested triglycerides can be 
calculated. Increased amounts of unsplit fat suggest impaired digestion. Unfortunately, this 
method may lead to false negative results. In the ‘diagnosis of steatorrhea’ section of 
chapter 1.1, we already described the drawback of the free fatty acid index for the detection 
of impaired digestion, because bacterial lipase can split substantial amounts of triglycerides 
in the colon (44).  
Although Van de Kamer has described his method in great detail, some additional notice 
will be given to specific issues in the next section that may be helpful for setting up new 
methods. 
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Additional remarks in relation to the Van de Kamer method. 
Extraction procedure 
Many fatty acids in the stool are present as insoluble divalent soaps (Ca2+ and Mg2+ salts), 
which cannot be extracted with petroleum ether. Lowering the pH to 2 will liberate all fatty 
acids from the soaps. Solvents, such as petroleum ether, chloroform and acetone, normally 
extract triglycerides and fatty acids quantitatively from dry matter. Van de Kamer (15) has 
found that the extraction recovery of fecal lipid from wet stool samples was low, but that 
the distribution coefficients remarkably increased by adding ethanol to the acidified 
solution. A contribution of 60% ethanol (v/v) resulted in nearly 100% recovery of the long 
chain fatty acids with chain length greater than fourteen (mainly palmitic and stearic acid) 
using a single extraction. Under these conditions myristic acid (C14) had a recovery of 90 
%, whereas the recovery of the short chain fatty acids (≤ C6) was very low (< 25%). 
Lowering or raising the ethanol contribution lowers the extraction recoveries. About 1% of 
the 60% ethanol layer dissolves in the petroleum layer. Therefore, Van de Kamer used a 
small correction factor in his calculation formula.  
 
Quantitative analysis of fecal lipids 
Using the Van de Kamer method, the amount of lipid is quantified by titration of the free 
fatty acid COOH group with sodium hydroxide. As a consequence of this titration, the lipid 
content has to be calculated by using the mean molecular weight of fatty acid. It is 
important to notice that the total fecal lipid content is normally expressed as triglycerides in 
g/day, but sometimes the total amount of fecal fat is expressed in fatty acids. Unfortunately, 
the lipid class (triglyceride, or fatty acid) in which the total lipid is expressed is hardly ever 
mentioned. Because the titration is applied on the COOH group of the fatty acids, the 
molecular weight, used in the calculation procedure, must include the molecular weight of 
13 from the glycerol residue (CH) of the triglycerides, otherwise an underestimation of the 
outcome of about 5% will occur if total lipid is supposed to be expressed in triglycerides in 
g/day. Van de Kamer (15) has found that the mean molecular weight of fatty acids in feces 
depends on the composition of the dietary lipids. Dietary habit may vary in different 
countries and may in change in time. Therefore, the exact (mean) molecular weight of the 
calculation formula is important, in order to obtain accurate results. Van de Kamer used a 
mean molecular weight of 276 in this standard formula for the determination of total fecal 
lipid. Van de Kamer estimated his molecular weight by weighing and titration of the fatty 
acids in purified petroleum extracts of feces (mw fatty acids = mg / mmol fatty acids). His 
final molecular weight was based on a mean molecular weight of 263 of the fatty acids in 
normal adults and adding 13 for the glycerol residue. The calculation formula of the Van 
the Kamer method, is defined as: 

Fecal fat in g per 100g feces ≈ mltitrated NaOH x 276 x NNaOH x 1.03 

The dilution and weighing conversion factors are not specified in this formula, because they 
strongly depend on the exact procedure that is used. The factor 3% (1.03) is a combined 
correction factor for the volume increase of ethanol in the petroleum ether layer and an 
adjustment for the average distribution coefficient (15).  
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Origin of fecal lipids 
The aim of the Van de Kamer method is the detection of possible impaired absorption of 
dietary fat. As a consequence, the method should be restricted to the detection of dietary 
lipids (15). To judge this fact, some general understanding of the origin of the various lipid 
classes in feces is necessary. The lipids in stool may be subdivided into dietary lipids, 
volatile fatty acids (VFA) and endogenous lipids. 
 
Dietary lipid: 
The majority of the dietary lipids are triglycerides (up to 150 g/day). The daily diet of an 
average western adult also contains about 4–8 g phospholipids, predominantly lecithin, and 
small amounts of sterols (0.5 g), such as cholesterol and sitosterol. The upper gut of an 
average healthy person normally absorbs over 98% of these ingested lipids. As a 
consequence, about 1–3 g of the dietary lipids is normally excreted in the feces. 
 
VFA 

VFA are fermentation products from carbohydrates produced by the large intestinal 
bacteria. These VFAs, such as acetic acid, propionic acid and butyric acid, are mostly 
absorbed by the colonic wall (45) to provide metabolizable energy.  

 
Endogenous lipids: 

The endogenous lipids are primarily remnants of biliary lipids (bile acids and sterols) 
and phospholipids from membranes of sloughed intestinal and bacterial cells. About 
15–40 g of endogenous lipids (biliary, sloughed cells and other intestinal secretions) are 
normally re-absorbed in the small intestine. 
- Approximately 1 g of cholesterol (secreted from the gall bladder) is eliminated from 

the body per day. About half of the cholesterol is excreted in the feces in the form of 
neutral sterols, whereas the rest is excreted as bile acids. Coprostanol is the major 
sterol in feces, which is formed from cholesterol by the bacterial flora. The majority 
of the so-called primary bile acids (e.g. cholic acid) is re-absorbed in the small 
intestine, whereas the rest (approximately 0.5 g/day) is metabolized by colonic 
bacteria and are subsequently excreted in the feces (46). 

- Most (1–3 g/day) endogenous fecal lipids (phospholipids) derive from membranes 
of sloughed cells and bacteria. During transit through the colon several bacterial 
modifications occur, including hydrolysis of the phospholipids by various bacterial 
lipases (5). 

 
Care et al. (5) have fractionated the fecal lipids based on their different physical properties. 
Each fraction was successively quantified chromatographically. Table 4 shows the relative 
amounts of lipids that are usually excreted in stools of healthy man with a daily total output 
of 4–6 g/day. From this table it can be seen that no glycerides are found. Only in case of 
severe pancreatic insufficiency glycerides may be present. Furthermore it can be seen that 
the majority of lipids are in the form of fatty acids or soaps. 
 
The principle of the Van de Kamer method is based on additional saponification of the 
glyceryl-, sterol- and phospholipid esters, liberating the fatty acids from the soaps by 
lowering the pH, extraction of the apolar components in petroleum ether and detection by 
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titration of the carboxyl group (COOH) of the fatty acids with sodium hydroxide. As a 
consequence, the phospholipids in stool, most of them originating from cellular debris and 
bacteria, are additionally measured as free fatty acids. Van de Kamer has shown that VFA 
are not quantitatively extracted into petroleum ether from the alcoholic HCl solution, using 
a single step (15). As a consequence, the Van de Kamer method measures all non-neutral 
lipids and other acidic organic components (such as bile acids and other apolar organic 
acids), but hardly any VFA. Other methods for the determination of fecal fat are even more 
non-specific. Some of these methods, such as the gravimetric method of Sobel (9) measure 
the total fecal lipid content (neutral and non neutral lipids). 
 
 
Table 4. Relative distribution of lipids in feces 
of individuals with normal lipid excretion rates. 

Lipid fraction % of total lipid 
Fatty acids and 
Na+ and K+ soaps 

70 

Ca2+ and Mg2+ soaps 10 
Glycerides (TG and DG) 0 
Neutral sterols and bile acids 15 
Other (e.g. phospholipids) 5 

TG, triglycerides; DG, diglycerides 
 
As shown above, stools contain various lipid classes, many of these lipid classes have 
different origins and the physical and chemical properties of the lipids may be modified at 
different sites in the intestine. None of the methods for determination of fecal fat is able to 
measure the excretion of lipids of dietary origin alone. Under normal physiological 
conditions, about half of the fecal lipid is endogenous, the remainder of dietary origin (47). 
Therefore, one should notice that all methods for determination of fecal fat measure a 
certain amount of background noise (non dietary lipids) with a certain amount of dietary 
lipids superimposed on top of it. Fortunately, the amount of non-dietary lipids is fairly 
constant. Therefore, the upper reference limit of 7 g/day fecal fat is based on a combination 
of excreted endogenous and dietary lipids. Even today, there are no methods available that 
can measure fecal lipids of only dietary origin in a simple, or inexpensive way. If patients 
with steatorrhea consume a lipid free diet during the test, increased fecal lipid 
concentrations will not be found. Therefore, it is recommended that patients consume a 
standardized diet containing at least 100 g fat per day, to ensure sufficient accuracy of the 
test results. 
 
 
2.1.1.2.  Gas chromatography: 
 
Introduction 
Gas chromatographic analysis of different lipid classes may be used to gain a better insight 
in the distribution of different lipid classes of fecal lipid. In addition, the GC analysis of FA 
in fecal lipid may be used for the determination of the mean molecular weight of FA in 
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stool (48). As stated in the previous chapter, fecal lipids may originate from different 
sources (diet, bacteria, cell membranes, etc.). Apart from their origin, there is no generally 
accepted definition of ‘lipid’. Christie (49) has defined lipids as ‘fatty acids’ and their 
derivates, and substances related biosynthetically or functionally to these components. A 
major classification is generally made between simple and complex lipids. The simple lipid 
class contains lipids such as fatty acids (FA), fats (esters of fatty acids with glycerol), 
whereas the complex lipid class contains lipids like phospholipids and precursors of lipids 
and derived lipids. The neutral lipids, such as sterols (e.g. cholesterol) and sterol esters 
belong to this last category (50). In a certain sense, bile acids may be reckoned among the 
complex lipid class also, since they are derived from cholesterol. 
To obtain better insight in the composition of different lipid classes, separation of the 
different lipid fractions of feces may be performed by a variety of techniques such as 
preparative thin layer chromatography (51), high-performance liquid chromatography 
(HPLC) (49), or solid phase extraction (52). Hoving et al (53) have used capillary gas 
chromatography (GC) for characterizing the fatty acid compositions of cholesterol ester and 
triglyceride fractions in plasma, using a preceding solid phase extraction with an 
aminopropyl-silica column. Because of its high separation power, GC analysis, using 
capillary columns and flame ionization detection (FID), is definitely an important technique 
available to the lipid chemist for the analysis of FA in various biological fluids (54). This 
method is suitable for the quantitative analysis of different kinds of fatty acids in total lipid, 
or separate lipid classes. GC analysis of lipid can be applied on a wide variety of biological 
materials such as plasma, erythrocytes, amniotic fluid, tissue, or in feces as described 
hereafter. Contemporary methods for the analysis of FA make use of apolar capillary GC 
columns. With this column type, the fatty acids are separated in the order of their mass. 
With the standard GC analysis, the saturated, as well as the unsaturated fatty acids from 
C14 (myristic acid) up to C26 can be separated in a quantitative manner with sufficient 
separation power. Cholesterol, bile acids and other sterols elute after the fatty acids from 
the GC column. By using an adjusted temperature program and an appropriate isolation 
procedure that is capable of a quantitative extraction of the more volatile FA, the medium 
chain fatty acids, as low as C6, may also be analyzed.  
 
FA analysis of different lipid classes, using GC. 
Verkade et al (19) described the determination of the fatty acid composition of the 
triglyceride, cholesterol ester and free fatty acid fractions of feces, after separation of these 
lipid classes with solid phase extraction. Their method was adapted from a method of 
Kaluzny et al (52). Kaluzny and associates used a bonded phase aminopropyl column for 
the separation of 7 lipid classes (FA, triglycerides, diglycerides, monoglycerides, 
cholesterol esters, phospholipids and cholesterol) on the basis of lipid polarity, solvent 
strength and polarity. With this separation method, recoveries of at least 97% were reached 
for each of the lipid classes. 
Before isolation of the lipids from feces in a relative pure state, the pH of the fecal sample 
has to be brought to pH 2, in order to liberate the fatty acids from their potential soaps. This 
step was however not used by Verkade. The extraction of the fecal samples is performed 
with a chloroform-methanol mixture (2:1 by volume) which was described by Folch (55). 
To prevent auto-oxidation of the polyunsaturated fatty acids, butylated hydroxytoluene 
(BHT) is usually added during extraction. Once extracted in the Folch solvent mixture, the 
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fecal lipids can be separated into their respective lipid classes. The Folch extract is 
evaporated to dryness and redissolved in hexane. The hexane is brought onto the 
aminopropyl-silica column and eluted with 2 separate aliquots of hexane. The combined 
hexane eluate contains the cholesterol-ester (CE) fraction. The triglyceride (TG) fraction is 
subsequently collected by elution (3x) with diethyl ether:dichloromethane:hexane (1:10:89, 
vol:vol:vol). The FA fraction is collected by eluting the column with 2% acetic acid in 
diethylether (2x). Finally, the phospholipid (PL) fraction is eluted from the column with 
methanol. The FA, TG, CE and PL fractions are evaporated to dryness. The fatty acids of 
the fractions are transmethylated with a methanol:6 mol/l HCl (5:1, vol:vol) mixture to fatty 
acid methyl esters. The fatty acid methyl esters (FAME) are purified by extraction of the 
mixture with hexane. Figure 3 shows the separation process of the different fecal lipid 
classes. The collected FAME in hexane is analyzed by GC with FID, by injecting a small 
amount of the hexane extract on an apolar cross-linked methyl silicone column. The fatty 
ester methyl esters are identified on the basis of their retention times, using standard 
solutions containing even- and odd numbered saturated and unsaturated fatty acids. 
Quantification of the fatty acids is performed by adding a known amount of C17 fatty acid 
to the samples at a certain point in the extraction procedure. This C17 is used as an internal 
standard in the GC procedure (19). 
If FAME analysis of the combined lipid classes (total lipid) is required, the fecal samples 
must be brought to pH 2, extracted with a Folch mixture, evaporated to dryness, 
transmethylated and extracted with hexane. Except for FAME the hexane may contain 
neutral sterols and bile acid methyl esters. GC analysis of these components, using a 
capillary column with an apolar stationary phase, may show tailing peaks. This peak tailing 
may be caused by the polar 3-OH group of the cholesterol backbone of these components. 
Therefore, the hexane layer should be dried and the sterol and bile acid fraction should be 
trimethylsilylated with tri-sil-TBT. After forming of the fatty ester methyl esters and 
trimethylsilylated sterols and bile acids, the components must be extracted with hexane. 
Figure 4 shows the extraction process of FAME, sterols and bile acids from stool. Figure 5 
shows a GC lipid profile. The fatty ester methyl esters are identified and quantified as 
described before. A description of the identification and quantification of the sterols (56) 
and bile acids (57) may be found elsewhere.  
 
Based on the selectivity of GC analysis, the method may be used as a reference method for 
fecal fat determination. The selectivity could even further be enhanced by a combination of 
gas chromatography and mass spectrometry (GCMS). Nevertheless, the method should not 
be used for routine analysis of fecal fat, because of its rather high complexity. 
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Figure 3. GC analysis of FAME in Figure 4. GC analysis of FAME 
the fractionated fecal lipid classes.  sterols and bile-acids in total  
 fecal lipid. 
 
 
 

 
 
 

 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FAME, fatty acid methyl esters; CE, cholesterol esters; 
TG, triglycerides; FA, fatty acids; PL, phospholipids 
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Figure 5. GC transmethylated fatty acid profile of feces. The relative response is defined as the peak height of the 
respective fatty acids in relation to the height of the internal standard (17:0). 
 
 
 
2.1.2. Urinary calculus analysis: 

 
2.1.2.1. Wet and dry chemical analysis: 

 
Introduction 
The chemical analysis of urinary calculi has been an often-neglected field in clinical 
chemistry. However, the quantitative determination of the chemical composition of urinary 
calculi is important. Accurate analysis of the composition of calculi may provide an 
indication of the underlying condition and direct efforts towards its identification and 
treatment. Qualitative methods have dominated the investigation of urinary calculi for more 
than 100 years. In 1860, J. F. Heller (58) proposed a scheme for chemical investigation of 
urinary stones. His method was based on the colour of the sample, the odour at ignition of 
the pulverized material, and a number of chemical reactions performed on the dry sample. 
Even today, this scheme is utilized in a number of clinical laboratories (59). Although the 
method has gone through some modifications, it is commercially available in the form of 
kits, with tests for routine qualification of the composition of the urinary calculus. Of these 
kits, the Merckognost 11003 kit for urinary calculus analysis (Merck, Darmstadt, Germany) 
is widely used. Other kits, such as the Oxford and the Temmler kit are no longer 
commercially available. The tests of these kits all rely on spot colour end-point detection of 
the ions of the components of dried samples (60). Another method, often combined with the 
qualitative dry ‘spot test’, is quantitative ‘wet chemistry’. In the wet chemistry method, ions 
derived from dissolved stone material are quantified using automated chemistry analyzers. 
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Subsequently, the quantified ions can be combined into salts by calculation (61). In contrast 
to dry spots tests and wet chemical analysis, which only measure ions, infrared 
spectroscopy and X-ray diffraction provide information on the actual salts. The latter two 
physical-chemical analytical methods also provide information about the degree of 
hydration of the components, and demonstrate better quality in the analysis of spurious 
calculi. Table 5 shows the absolute and relative distribution of the techniques used by a 
number of laboratories of the Netherlands in 1986 and 10 year later. These data were 
reported by the Stichting Kwaliteitsbewaking Ziekenhuis Laboratoria [SKZL, the Dutch 
quality control society] (62). From this table, it can be seen that the total number of 
participants using own chemicals or commercially available kits decreased in favor of 
laboratories using infrared spectroscopy. A similar shift, in the direction of physical-
chemical techniques, was also observed in quality control programs, organized by the 
German quality control society between 1980 and 1989 (63). The physical-chemical 
methods will be described in the next chapters. No single method of analysis is perfect. 
Sometimes, the best approach is using a combination of techniques. Below, the dry spot test 
and wet chemical analysis is described in more detail.  
 
Dry spot test 
Preceding performance of the spot tests, the colour, shape, size, and consistency (hardness) 
of the calculus have to be recorded. A description of the specific characteristics of a number 
of urinary calculus components may be found elsewhere (64;65). If only pulverized sample 
material is available, the colour and the consistency have to be recorded. After weighing the 
sample, the calculus must be washed with de-ionized water and completely dried with filter 
paper, or with silica gel. It is important to dry the calculus at ambient temperatures, because 
some of the calculus components may lose crystal water when drying at higher 
temperatures. Struvite (MgNH4PO4.6H2O) not only loses crystal water, but also ammonia, 
when dried at 37 °C (61;66). 
 
Table 5. Absolute and relative distribution of urinary calculus analysis 
techniques, used in different laboratories in the Netherlands in 1986 and 1996. 

 1986 1996 
Total number of participants:  69 37 
   
Own reagents (qualitative) 17 25% 2 5% 
Own reagents (quantitative) 3 13% 4 11% 
Oxford kit 16 23% -  
Temmler kit 8 11% -  
Merckognost kit 14 20% 17 46% 
Infrared spectroscopy 3 4% 10 27% 
X-ray diffraction 1 1% 1 3% 
Polarization microscopy 1 1% 2 2% 

 
Urinary calculi are normally formed over a long period. Therefore, the calculus may be 
layered and the nucleus and each layer may contain different components. However, in the 
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routine laboratory the calculi from each patient are pulverized and mixed very well and the 
examination is carried out on samples of this material.  
Urinary calculus components can be divided in organic and inorganic components. Urate 
and xanthine components are classified as organic components, whereas oxalate, phosphate 
and carbonate containing components belong to the inorganic component class (64). A 
distinguishing feature of organic components is that they will burn in a flame, resulting in 
loss of volume. This can be tested by burning a small, but known amount of calculus 
powder in a flame (oxalate will burn partly). For this reason and in this context, oxalate is 
classified to the inorganic component class. 
About 50 mg of dry, pulverized calculus material is needed to perform the spot tests. With 
the spot tests of e.g. the Temmler kit the following ions and organic components can be 
identified: oxalate, carbonate, phosphate, magnesium, ammonium, calcium, uric acid and 
cystine (Figure 6). For example, the detection of effervescence of CO2 after addition of acid 
(HCl) to a small amount of stone powder indicates the presence of carbonate in the urinary 
calculus (present in calcium carbonate, or carbonate apatite). 
Unfortunately, often little information can be obtained about the major constituent of the 
urinary calculus, using this method.  
 
Wet chemistry analysis 
Wet chemical analysis is based on the quantification of ions and organic components, from 
which the quantitative composition of the salts and components may be calculated. In 
mixed stones these calculations may be rather complex. Therefore, it is particularly 
important that the stone is carefully examined before analysis. As a consequence, it is often 
undesirable to crush and analyze the whole calculus, as minor components may be diluted 
out and overlooked. After drying the pulverized calculus sample(s) on silica gel, an 
accurately weighed amount of sample is dissolved in HCl, sulphuric acid, or nitric acid. 
Larsson et al (61) found that nitric acid was the only effective agent for complete 
dissolution, however others have reported (67) that organic components do not dissolve into 
acid quantitatively. For each analysis, about 10–15 mg of sample material is needed. After 
dissolution of the calculus the ions (magnesium, calcium, oxalate, ammonium and 
phosphate) and organic components (urate and cystine) may be measured with automated 
laboratory analyzers. Especially wet chemistry of urinary stones may be prone to errors, 
because the quantitative results are always based on the assumption of 100% recovery. 
Most urinary calculi contain small amounts of protein and mucopolysaccharides (68), 
causing only a minor decrease of the recovery. However, if other unusual components (such 
as xanthine and spurious components) are present in the sample, the recovery may 
definitely not be 100%. If small recoveries are obtained (<70%) the sample should be 
examined by further chemical or physical-chemical techniques. 
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Figure 6. Part of the procedure of the Temmler kit for qualitative analysis of urinary calculus compositions. 

 
Based on the results of external quality control surveys (63), the single use of the 
qualitative dry spot tests and semi-quantitative wet chemistry analyses is not recommended 
(69). On the other hand the use of both techniques may provide additional information to 
infrared analysis or X-ray diffraction for the determination of the composition of urinary 
calculi. 
 
 
2.1.2.2. X-ray diffraction: 
 
Nearly 95% of all solid urinary calculus materials appears in a crystalline form, whereas the 
remaining 5% is amorphous. The atoms, ions, or molecules of the crystalline solids are 
arranged in regular patterns, which are repeated in three dimensions. In amorphous 
substances, the atoms are ordered in a random way (70). Sometimes, crystals are embedded 
in amorphous structures of the same material, in which case one speaks of the amount of 
crystallinity (70).  

When an X-ray beam hits an atom, the electrons around the atom will start to oscillate at 
the same frequency as the incoming wave, resulting in destructive inference in almost all 
directions. This means that the combining beams are out of phase and no energy will leave 
the solid sample. Because the atoms in a crystal are arranged in regular patterns, a few 
directions will have constructive interference. Therefore, according to Bragg’s law (71), 
crystals appear to reflect X-rays when an X-ray beam hits parallel atomic layers at certain 
angles of incidence (theta, θ). By stepwise changing the angles of incidence, the X-rays 
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interact with crystalline substances, resulting in highly specific diffraction patterns. As a 
consequence, every crystalline substance produces its own specific pattern, and in mixtures 
each substance produces its own pattern together with each of the other substances. An 
extensive description of X-ray diffraction can be found in a publication of Dosch et al. (72). 
 
An X-ray diffraction (XRD) analyzer (Figure 7) is composed of a source of X-rays, a 
sample holder and a detector. A narrow beam of X-rays, which strikes the crushed 
(pulverized) crystalline substance, is scattered in patterns that depend upon the electron 
densities in the different parts of the crystal. The scattered or diffracted beams can also be 
detected by means of a Debije-Scherrer-Hull camera on X-ray photographic film (73), or 
with a solid state electronic detector (74). The films, obtained with the Debije-Scherrer-
Hull camera contain patterns of dark concentric rings. The radius of each ring is a measure 
of the crystal lattice distance, whereas the amount of blackening of the ring on the emulsion 
indicates the intensity of the reflected radiation, which in turn can be used for the 
calculation of the relative composition of the components in a mixture (75). Today, the 
Debije-Scherrer-Hull camera is not used very often anymore for urinary calculus analysis 
and has been replaced by X-ray diffractometers (Fig. 7). By stepwise moving the detector 
with an angle from 0° – 50° over the sample, the detector records the measured intensity as 
a function of the diffraction angle.  
 

 
Figure 7. Diagram of a X-ray diffraction analyzer 

 
After mathematical conversion of the detector signals, the typical diffraction spectra 
(diffractograms) can be shown. These diffractograms consist of a plot of reflected 
intensities against the detector angle 2-theta (degrees 2θ), or theta (degrees θ), depending 
on the goniometer configuration. In case of urinary calculus analysis, about 4 mg of the 
grinded sample is applied on a mono-crystalline silicon powder applicator disk. 
Figure 8A shows a typical diffraction spectrum of whewellite, whereas Figure 8B shows 
the diffractogram of apatite [Ca10(PO4)6(OH)2]. The samples are measured from diffractor 
angles 7° to 49.5° (2θ), in steps of 0.01°. Apatite is known for its microcrystalline structure 
and therefore lacking sharp and well defined peaks.  
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After acquisition of the diffractograms, the obtained patterns have to be interpreted for the 
estimation of the composition of the urinary calculus. The International Center Diffraction 
Data (ICDD) database, formerly known as Joint Committee on Powder Diffraction 
Standard (JCPDS) is often used as reference database for comparison of the diffractograms. 
Despite the availability of the ICDD reference database, the interpretation of the patterns 
still has to be performed by specialists with many years of experience. Therefore, Wulkan 
and associates al have developed an expert system (LITHOS) for the evaluation of X-ray 
diffractograms of urinary calculi (76).  
 

 
Figure 8. XRD spectrum of whewellite (A) and apatite (B). The data of the diffractograms were 
obtained from the Clinical Chemical laboratory of the University Hospital of Rotterdam, The Netherlands  
 
X-ray diffraction and infrared spectroscopy both are well suited for the quantitative analysis 
of the atomic composition of urinary calculi (77). X-ray diffraction can detect crystalline 
components in low concentrations. Unfortunately, the quantitative determination of 
amorphous components by XRD may be problematic (see Figure 8B). This is especially 
true when amorphous substances are present in mixed stones. Moreover, the XRD 
apparatus, and ICDD reference library are very expensive. The XRD apparatus is 
potentially dangerous with respect to accidental exposure to X-rays and has no other 
application in the routine clinical chemical laboratory. 
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2.2. Infrared spectroscopy and sample handling techniques 
 
Introduction 
In analytical chemistry infrared spectroscopy (IR) is mainly used for the analysis of organic 
components. The qualitative assessment of organic components is performed for the 
identification of unknown compounds, or for the determination of the chemical structure of 
the components. In addition, IR analysis may be used for quantification of the components. 
IR spectroscopy is also known as vibration spectroscopy, since the spectra arise from 
transitions between the vibrational energy levels of a covalent bond of a molecule. The 
infrared spectrum, which ranges from 1 µm to 1000 µm, is part of the electromagnetic 
spectrum and is surrounded by the visible and microwave regions (Figure 9). The IR region 
may be further subdivided in the near infrared, the mid infrared and the far infrared regions 
(78). 

 
Figure 9. Infrared region of the electromagnetic spectrum. 

The energy, associated with the radiation of the IR region, is sufficient to cause rotational 
and/or vibrational changes of the atomic bonds of the molecule. In order to absorb IR 
radiation the covalent bond of a molecule must undergo a net change in dipole moment as a 
consequence of its rotational or vibrational motion (79). According to the quantum theory, 
when a molecule absorbs IR radiation, a vibration transition occurs from the ground state to 
the first excited state (V0–V1). This occurs when the frequency of the radiation matches the 
natural vibrational frequencies of the molecule. Except for this first level transition, other 
transitions may also occur (V0–V2, V0–V3). In theory, a single absorption band should be 
observed for each transition level. Second and higher order transitions always give rise to 
weaker absorbances. The bands causing the higher order transitions are often called the 
overtone bands. The energy required for the transitions V0–V1, V1–V2, etc, are about equal. 
Therefore, the first overtone of a band is often found at wavenumbers two times the 
wavenumber of the first transition level (V0–V1) ± 20 cm–1. The same is true for higher 
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overtones. For example, the first overtone band of the strong CH2 band at 890 cm–1 is found 
at 1780 cm–1. 
 
Infrared spectra of substances are characterized by three major properties, namely the 
number of bands of molecule in the spectrum, the wavenumber positions of the bands and 
the intensities of the bands. 
 
The number of bands. 

Except for bands found at different wavenumbers resulting from the various transition 
levels, different bands may occur as a result of the freedom of movement of the single 
atoms in the molecule along their X, Y and Z-axis. The relative positions of the atoms 
in a molecule are not fixed, but fluctuate as a consequence of different types of 
vibration. Apart from rotation, normally two major modes of vibration occur, namely 
stretching (Figure 10A) and bending or deformation vibrations (Figure 10B). Both 
vibrational modes can be further classified in symmetric and asymmetric types of 
vibration. Carbon dioxide (CO2) is a symmetric molecule. Therefore, no change in the 
dipole moment will occur by symmetric stretch vibration, and as a consequence no 
symmetric stretch band will be seen in the IR spectrum of a CO2 molecule (Figure 
10A) (80).  

A

B

 
Figure 10. Symmetric stretch vibration (A) of CO2. Infrared inactive. 
Symmetric bending vibration (B) of CO2. Infrared active. 

 
Based on the transition levels and vibrational modes of the molecule, a great number 
of bands should be seen in the IR spectrum. In practice the number of observed bands 
is frequently much less because the symmetry of the molecules results in no dipole 
moment at a certain vibration frequency (see e.g. CO2), the absorption intensity is too 
low to be detected, the energies of two or more vibrations are nearly identical, or the 
vibrational energy is beyond the wavenumber range of instrument. 

The position of the bands. 
For diatomic molecules it is possible to predict the theoretical position of the bands for 
the stretch vibrational modes. This can be performed by calculating the vibrational 
frequencies, by using a formula for harmonic oscillations (79). Usually there is a good 
agreement between the calculated and experimental values for the wavenumbers. 
However, in practice the specific groups rarely absorb at definite positions but occur 
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over a range (band) of wavenumbers, because the simple calculations do not take into 
account the effects arising from other neighboring atoms of the molecule. While these 
interaction effects may lead to uncertainties in the identification of the functional 
groups of a molecule, the combination of the bands of an IR spectrum is very 
important for a positive identification of a specific organic or anorganic component. 
For this reason, IR spectra represent one of the unique physical properties of organic 
and some anorganic components, with the exception of optical isomers. 
The amount of energy to cause a change in rotational level is very small, which 
primarily occurs in the far infrared region (200–10 cm–1). In this spectral region, 
which is mainly used for the determination of gasses, the absorption bands of the 
gasses are found by discrete, well-defined lines. Rotation is highly restricted in liquids 
and solids. Their vibrational bands are found in the mid IR (4000–200 cm–1) and the 
near IR (12500–4000 cm–1) regions. Because the energy required for deformation is 
much lower than for stretching, the deformation bands are found at lower 
wavenumbers than those for the stretching vibrations. In the near infrared spectral 
region, mainly weak absorption overtone bands of the OH, NH, CH and C=O groups 
can be found.  

The intensity of the bands. 
Just like in ultraviolet-visible (UV–VIS) spectroscopy, the intensity of an absorption 
band is usually expressed as the molar extinction coefficient (ε). This intensity is 
proportional to the square of the change of the dipole moment during vibration. 
Therefore, if no change in the dipole moment occurs (e.g. symmetrical stretch 
vibration of CO2), no absorption band will be seen. The intensity of overtone 
absorption is frequently low and the bands may not be observed. Fortunately the 
intensity of carbon-carbon single bond stretching vibration is usually very low. 
Therefore, the majority of the bands, observed in an IR spectrum, arise from the 
substituent groups and not from the carbon skeleton of the organic molecules. 

 
IR spectra are plots of the absorbance against wavelength, similar to the plots of UV–VIS 
spectroscopy. However, ordinarily the ordinate of IR plots is expressed in transmittance 
units (%), whereas the abscissa is expressed in wavenumbers. The wavenumber scale is the 
reciprocal of the wavelength scale and has the units cm–1.  
 
An advantage of the weak absorbance in the NIR region is that sample dilution is often 
unnecessary and that longer pathlengths may be used. For this reason NIR analysis is well 
suited for remote analysis (e.g. transcutaneous glucose measurement). Because of the 
limited number of functional groups that can be detected (OH, NH, CH and C=O) with NIR 
spectroscopy, more complex data handling routines are often necessary for quantitative 
analysis. Another specific problem of the NIR region is that the shorter wavelength areas 
are prone to excessive scattering, causing loss of light. The most important region for 
identification of organic components is the mid IR region. Today the majority of the 
analytical IR applications are confined to the IR region between 1700 and 400 cm–1, 
because most of the functional groups have relatively sharp absorption bands in that area. 
With this region, which is also called the fingerprint area of the spectrum, quantification of 
the components may often be done with simple data handling methods. Some of the more 
complex data processing techniques used in IR spectroscopy will be described in more 
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detail in the next chapters. Structure analysis may be performed by comparing the bands 
from the spectrum with the approximate band positions of infrared absorption bands. This 
information may be obtained from spectroscopic software (e.g. Sadtler software, Bio-Rad 
Laboratories LTd, London, UK) or be found in tables and correlation charts in different 
publications (41;78;79;81). Figure 11 shows a correlation chart of the IR region between 
2000–650 cm–1.  

 

Figure 11. Correlation chart with a number of functional groups in the IR region from 2000–650 cm–1. 

IR Instrumentation 
IR spectrometers have the same basic components as the instruments used for UV-VIS 
spectroscopy. They consist of three basic components: a source to provide IR radiation, a 
wavelength selector to disperse the source energy and isolate the required wavelength, and 
a detector to measure the intensity of the dispersed radiation. Interference filters are often 
used as wavelength selector for the NIR infrared region. 
For the (mid) IR region often diffraction gratings are used as infrared monochromators. The 
energy of infrared sources is generally low. Using a narrower slit width of the 
monochromator to increase the quality of the spectral resolution will usually be 
accompanied by a decrease of the signal to noise (SN) ratio. Fortunately, weak spectra may 
be extracted from noisy environments by means of signal averaging. The SN ratio of a 
spectrum may be improved by a factor √ n by averaging n replicated spectra. This 
implicates, that averaging of 16 replicated scans gives a four-fold enhancement the SN 
ratio. Using conventional infrared spectroscopy, the resulting radiant power is recorded as a 
function of the radiant frequency, which is inversely related to the wavenumber. With this 
so-called frequency domain spectroscopy, the absorbance intensity is measured at each 
wavenumber or resolution element separately. Therefore, signal averaging of a number of 



Analytical methods 

 

 
31 

 

replicated scans, consisting of a great number of resolution elements (e.g. full spectrum 
scans), may be very costly in terms of time. 
 
In contrast with conventional spectroscopy, Fourier transform spectroscopy measures all 
resolution elements of a spectrum simultaneously. Fourier transform spectroscopy is 
concerned with changes of radiant power with time, and is also called time domain 
spectroscopy. It is important to notice that the time domain spectrum contains the same 
information as the frequency domain spectrum. For that reason, the complex time domain 
and frequency domain spectra can be interconverted into each other by complex 
mathematical (Fourier) calculations. In order to obtain a measurable signal for the various 
wavelength regions of the spectrum in time domain spectroscopy, a signal-modulation 
(conversion) has to be employed. For this purpose, the Michelson interferometer (Figure 
12) has been used extensively for the measurement of the infrared region.  
 
This design of the device for modulation of the infrared radiation was first described by 
Michelson in 1891. The Michelson interferometer splits the radiation of an infrared source 
into two beams by means of a semi transparent mirror (beamsplitter) in such a way that the 
two beams with almost equal power are positioned at right angles of each other. The 
resulting twin beams are reflected from mirrors, one of which is fixed and the other of 
which is movable between position X and -X (see Figure 12).  
 

 
Figure 12. Michelson interferometer for signal-modulation in FT-IR spectroscopy. 
 
These beams meet the beamsplitter again and half of each beam is directed toward the 
sample and detector. If an absorbing material placed in the sample compartment in these 
beams, the resulting interferogram (Figure 13) will carry the spectral characteristics of the 
analyte. An interferogram is a plot of the output power of the detector against the 
retardation. The retardation is the difference of the path length of the two beams. The actual 
conversion of the interferogram into a conventional infrared spectrum is very complex and 
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is done by computers. In modern FT-IR instruments, precise signal sampling is obtained by 
using a so-called laser-fringe system. It consists of a helium neon laser source, an 
interferometric system and a laser diode detector (Figure 12). This system gives highly 
reproducible and regularly spaced sampling intervals. The interested reader is referred to 
publications of Skoog et al. (79) and Griffith (82) for more information about FT-IR 
spectroscopy. 
 

FT-IR spectrometers have several benefits over the conventional scanning spectrometers. 
The differences between both methods are summarized in Table 6. Today, most IR 
spectrometers employed for measurement in the mid IR region are FT-IR spectrometers. If 
only absorbance data have to be collected from one, or a limited number of wavenumbers, 
low cost filter or dispersive spectrometers may still be used. 
 

Table 6. Comparison of conventional and FT-IR spectroscopy. 

Conventional FT-IR 
Lengthy scan times of full scans 
Measuring each resolution element 
separately 

Short scan times of full scans  
Measuring all resolution elements 
simultaneously 

Resolution non continuous over the 
wavenumber region 

Resolution steady over the whole 
wavenumber region  

Calibration of wavenumbers by 
external standards 

Internal calibration by means of the 
laser beam 

Sensitive to stray light Insensitive to stray light 
Low energy throughput High energy throughput 

 

 
Figure 13. Interferogram of a continuous IR source.  
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Normal optical materials such as glass or quartz absorb strongly in the infrared region and 
therefore cannot be used. Quartz can however be used in the near IR region, because it is IR 
transparent from 5000–2760 cm–1. Absorption cells, sampling devices and other optical 
parts of an (mid) IR spectrometer must be made of infrared transparent material in the 
region from 4000–200 cm–1. The substances most commonly used as optical parts in IR 
spectroscopy are given in Table 7, together with their useful transmission ranges, refractive 
indices and relative hardness relative to NaCl. 
  
Table 7. Physical properties of some materials for IR spectroscopy. 

Materia
l 

Transmission 
range 

Refractive index at 2000 
cm–1 

Hardness relative to 
NaCl 

NaCl 5000 – 590 1.52 1.0 
KBr 5000 – 340 1.53 0.4 
KRS-5 5000 – 250 2.37 2.2 
ZnSe 5000 – 500 2.40 8.3 
Ge 5000 – 600 4.01 160 
Diamon
d 

        5000 – 10 2.40 Very hard 

 
IR sampling handling techniques 
IR spectroscopy may be used for the analysis of gasses, liquids, pastes, powders and 
polymer films. The IR sampling techniques may be subdivided in transmission, and 
reflection techniques. The sampling techniques appropriate for the sample categories that 
were used in our own studies are summarized in Table 8.  
 
Table 8. Some sampling techniques. 

 Sampling techniques 
Sample category Transmission Reflection 
Liquid (chloroform extracts) Liquid cells  
Pastes (feces) Liquid cells ATR 
Powder (urinary calculi) KBr  ATR 

KBr, Potassium bromide; ATR, attenuated total reflection 
 
Analysis of liquids using a liquid cell: 
In mid IR spectroscopy water and alcohol are rarely used as solvents, because of their 
strong absorbance intensities. Furthermore, they are less suitable as solvents because of 
their interactions with the metal halide cell window materials that are often used. More 
commonly, organic solvents such as chloroform, carbon tetrachloride, and carbon 
disulphide are used. In mid IR spectroscopy, sodium chloride windows are often employed, 
because they are rather cheap, but must be handled with care because of their tendency to 
absorb moisture. Careful selection of the solvents must also be done to prevent unwanted 
interaction of the solvent absorbance bands with those of the components of interest. 
In mid-IR, the pathlength of infrared liquid cells are normally much smaller (0.1–1 mm) 
than those employed in UV-VIS spectroscopy because of the relatively high absorbance 
caused by the organic solvents. The pathlength of the cells is often fixed or may be adapted 
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by removable spacers. The pathlength in NIR spectroscopy may commonly be much larger 
(e.g. 1 cm) when compared to mid IR spectroscopy. 
We applied NIR spectroscopy, using a liquid cell with polyethylene windows and a 
pathlength of 1 cm for the determination of fecal fat. We also applied mid-IR spectroscopy 
for the determination of fecal fat, by measuring chloroform extracts of feces with a liquid 
cell with NaCl windows and a pathlength of 0.1 mm (both studies are described in Part I).  
Sometimes unwanted interference fringes may be observed in the spectra, which are caused 
by internal reflection of the light by the two cell walls. These fringes may occur when the 
refractive index of the cell window material and solvent differ too much. The fringes are 
observed as regular sinusoidal curves, superimposed upon the spectrum. Interference 
fringes may be beneficially used for the prediction of the exact pathlength of a cell (78).  
 
Analysis of powder with KBr tablets: 
The composition of solid samples are often measured by using the potassium bromide 
(KBr) disk technique. This technique is especially applicable for crystalline material. The 
solid sample is totally grinded, manually by using an agate pestle and mortar, or by using a 
mechanical mill. About 0.5–2.0 mg of grinded sample is thoroughly mixed with 100–200 
mg dry KBr. This mixture is applied to a special pellet die. The KBr disk is produced by 
applying about 10 kbar pressure to the pellet die construction with a hydraulic press. The 
resulting disk is typically 13 mm in diameter and has a thickness of less than 1 mm. The 
transparent disk is placed in a special tablet holder and measured in transmittance in the 
mid IR region. 
We applied the KBr sampling technique for the determination of the composition of urinary 
calculi (see Part II). 
Also when this technique is used, small inference fringes may be observed in the spectrum. 
These fringes may be prevented by the preparation of thicker disks (≥ 1 mm), by using 
more KBr. Spectral distortion may also be caused when the particle size of the sample is 
too large. In theory, the particle size of the sample should be less than the lowest 
wavelength to which it is exposed (2.5 µm = 4000 cm–1). If the sample is not sufficiently 
grounded, the spectrum may contain distorted bands and often sloping backgrounds caused 
by loss of energy by scattering. In such cases, prolonged grinding of the sample may 
enhance the spectral resolution and sloping background effects. Another spectral distortion 
may occur when the refractive indexes of the sample and the halide (e.g. KBr) differ too 
much. In practice this may not be a serious problem because the refractive index of most 
organic and inorganic components are almost similar to the refractive index of KBr (1.5). In 
case of serious band distortions, alternative halides (e.g. caesium iodide) may be used for 
the preparation of the disks. Both distortions due to a combination of the particle size 
effects and refractive index are known as the Christiansen effect.  
 
Analysis of pastes or powders with the attenuated total reflection technique: 
Attenuated total reflection (ATR) is a relatively new technique that can be applied to a wide 
range of sample materials, such as liquids, pastes and powder (83;84). This reflectance 
technique can be applied without sample pre-treatment. ATR is based upon the fact that IR 
radiation propagated through an optically dense medium is reflected when it arrives at an 
interface with a less optical dense medium. The reflection becomes complete when the 
angle of incidence is greater than a certain critical angle. It has been shown that, due to the 



Analytical methods 

 

 
35 

 

wave nature of radiation, the reflection does not occur directly at the interface of the two 
media, but after penetrating a small distance into the less dense medium. The depth of 
penetration of the radiation is a function of the wavelength of the radiation, the angle of 
incidence at the interface and the refractive indices (RI) of both media. Figure 14 shows the 
relationship between the wavelength (wavenumber) and the depth of penetration in a 
sample with a refractive index of 1.0, using a ZnSe ATR crystal with an angle of incidence 
of 45°. ATR can only be effective if the difference of the RI between the sample and the 
ATR crystal is large enough (∆ RI ≥ 1). Table 7 shows the RI values of some of the ATR 
crystal materials, whereas most sample materials have RI values close to one. Today, the 
majority of ATR sampling accessories are flat crystal plates with fixed angles (45°, 30° or 
60°) employing about 10 reflections (Figure 15). The incident light from the IR source is 
directed with a fixed angle onto the entrance of the crystal plate by means of a plane mirror 
system. At the gate of the ATR crystal plate the retarded radiation is directed towards the 
detector by the same kind of mirror. Because the source radiation is not directed by lenses, 
the whole sample upon the crystal plate is flooded with the radiation. Absorption and 
attenuation will take place at each of the internal reflections. The number of reflections may 
be increased or decreased by obtaining thinner or thicker ATR plates, by changing the 
length of the ATR plate, or by changing the angle of incidence. We applied the horizontal 
ATR technique for the determination of fecal fat (see Part I). 
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Figure 14. Relation between the depth of penetration and the wavelength using ZnSe as ATR crystal. 
 
Horizontal flat plate ATR crystals require a reasonable amount of sample material. More 
recently, micro-sampling ATR devices became available (Figure 16). Single reflection 
micro-ATR devices are usually equipped with diamond crystals and enable the 
measurement of very small amounts of sample material (liquids, pastes and solids). The 
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practical benefits of diamond as ATR crystal are its strength and chemical inertness. The 
intrinsic hardness of diamond, as well as the small sampling area of the micro-ATR 
(diameter usually < 1 mm) enables the application of high pressure to the sample on the 
crystal, without the risk of crushing the crystal. This pressure is needed to achieve sufficient 
sample contact between the solid sample and the sense area of the crystal. 
 

Detector

IR source

ATR crystal

Sample

 
Figure 15. Multiple reflection horizontal ATR system. 

 
For quantitative analysis, it is important that the pressure applicator of the micro-ATR is 
equipped with a pressure restraint in order to prevent irreproducible outcome as a result of 
the pressure-induced phase transitions (85). These transitions may result in changes of the 
polymorph distribution of the sample components. On the other hand, this pressure 
dependency is sometimes also beneficially used to obtain an extra spectroscopic dimension 
(see paragraph: Diagnostic applications of IR spectroscopy). We have applied micro-ATR 
(Golden Gate) for the determination of the composition of urinary calculi (see Part II).  
ATR is usually not practical in NIR spectroscopy because the very small penetration depth 
causes weekly absorbing bands in NIR. 
 
The ATR spectra are similar, but not identical to ordinary transmission spectra. The spectral 
bands will be the same, but their relative absorbances will differ because the depth of 
penetration varies as a function of the frequencies (Figure 14).  

  
Figure 16. Single reflection micro-ATR sampling device. 
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ATR sampling may be applied to almost any sample substance. Infrared analysis normally 
avoids the use of water as solvent because of its strong absorption in the mid IR region and 
for the reason that many of the materials used in IR analysis are typically non resistant to 
water. However, by using horizontal ZnSe ATR plate systems, quantitative analysis of 
samples dissolved in water is possible in mid IR. Liquids and pastes can normally be 
measured very reproducibly with ATR, but solid samples and powders may cause 
irreproducible results as a consequence of poor sample contact, as was described above. 
Therefore, the sample contact of the solid samples must be enhanced by clamping the 
sample onto the ATR plate with a pressure applicator. 
 
The list of the preceding sampling devices applied in IR spectroscopy is far from complete. 
Since the 1980s many sampling techniques evolved and became available to handle almost 
any sample. More information about these accessories, such as specular reflectance, diffuse 
reflectance (DRIFT), folded path cells for gas measurements, photoacoustic detection, IR 
microscopes (86) for micro-sampling and hyphenated techniques such as GC-IR. may be 
found in literature (87;88). More general background information about IR spectroscopy 
may be found elsewhere (78-80;82;89). 
 
Clinical and biomedical applications of IR spectroscopy  
IR spectroscopy has been employed for the analysis of several analytes in different 
biofluids and solid biosamples. IR spectroscopy has been applied for the analysis of 
pathological samples, for diagnostic applications and for non-invasive in vivo monitoring.  
 
Analysis of patient samples 
FT-IR spectroscopy has been used for fast multi-component analysis of different analytes in 
biological sample materials. Fecal fat, sugar, nitrogen and water contents have been 
quantified simultaneously using NIR reflectance spectroscopy (90). The fecal fat content 
has also been analyzed using mid IR spectroscopy (23). FT-IR spectroscopy has been 
employed for the determination of the composition of urinary stones (31) and human gall 
stones (91). Shaw et all (92) described an IR spectroscopic method for the simultaneous 
quantification of serum concentrations of total protein, albumin, triglycerides, cholesterol, 
glucose urea, creatinine and uric acid. The serum samples were spread as a thin film onto 
an IR-transparent material. After drying of the serum film, the samples were measured in 
transmission in the mid IR region. Other authors described a method for the IR 
determination of the lecithin/sphingomyelin ration in amniotic fluid (93). 
 
Diagnostic applications of IR spectroscopy  
IR spectroscopy has been applied for the 13C urea breath test for diagnosis of Helicobacter 
pylori infections inside the stomach (94;95). The Helicobacter pylori bacteria produce large 
quantities of urease. The test exploits the hydrolysis by urease of orally administrated 13C-
urea into ammonia and 13CO2, which diffuse into the blood. The 13CO2/

12CO2 enrichment in 
breath is measured using an isotope-selective nondispersive infrared spectrometer. 
Combinations of visible microscopy and IR spectroscopy are used in the development of 
methods for the diagnosis and identification of cancer cells. FT-IR microscopy (FT-IR-MC) 
is a hyphenating technique of an optical microscope and an infrared spectrometer. It allows 
visual and infrared assessment of different spatially localized parts of the sample on a 
microscopic scale. FT-IR-MC is very sensitive in visual and infrared transmission and 
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reflection. Healthy and cancerous cells have different infrared spectra. These differences 
are often based on changes in the DNA/RNA complexes and differences in lipid cellular 
membranes. The changes involve the phosphate, the C–O stretching bands and the CH 
stretch region. Another remarkable difference is the dissimilarity of the pressure 
dependence of the CH2 and C=O stretching modes of the normal and cancerous cells (96). 
Pressure dependency is a normal functional relationship between an increasing pressure (0 
– 20 kbar) applied to the sample and the spectral parameters (e.g. frequency, intensity, band 
shape) (97).  
A recent study, using FT-IR microspectroscopy, described the spectral differences between 
healthy and cancerous human lung cells (98). Another study described the improved 
discrimination by IR spectroscopy, between different types of tissue structures of human 
melanoma and colon carcinoma (96). FT-IR spectroscopy was also applied to samples of 
normal, and malignant and dysplastic cervical smears (99;100) . 
 
Noninvasive in vivo monitoring in IR spectroscopy 
Usually, NIR instrumentation is used for metabolic monitoring, because of its longer 
pathlength in relation to the mid IR region and availability of fiber-optics for the NIR 
region. In vitro monitoring is inherently invasive, causing relative lengthy turn-around 
times because the samples usually have to be analyzed in a central laboratory. In case of in 
vivo measurement, which is often not invasive, the analysis can be performed near the 
patient. Unfortunately, the accuracy of the non-invasive in vivo IR measurements does not 
yet match the accuracy of in vitro measurements (101). Therefore, the in vivo 
measurements are best suitable for the detection of a trend of change in one patient. Except 
for non-invasive patient monitoring in intensive care and surgery units, in vivo monitoring 
might be used for patient self-monitoring. 
A well-known example of in vivo monitoring is tissue oxygenation monitoring. Quaresima 
and associates described two approaches to non-invasive NIR spectroscopic measurements 
of cerebral hemoglobin oxygen saturation (102). Much effort has been put in near infrared 
reflectance spectroscopy for non-invasive monitoring of blood glucose. In some of the 
studies, glucose was measured through the surface of the finger (103), while others 
measured through the oral mucosa (101). Both kinds of transcutaneous glucose 
measurements were performed by using fiber optics and diffuse reflectance probes 
(104;105).  
 
From the previous descriptions we conclude that infrared spectroscopy is very useful for the 
determination of analytes in complex biochemical samples. The instrumentation is not very 
expensive, and there is a large number of sampling devices and optics available for 
invasive, as well as noninvasive measurement of almost any kind of bio-sample. In general, 
IR spectroscopy can save time and expense in terms of sample preparation.  
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3. Chemometrics 
 

3.1. General 
Today, clinical laboratories can produce an almost unlimited number of test results on body 
fluids from each patient sample submitted to the laboratory. Consequently, the clinical and 
hematological laboratories generate a lot of numerical information, which contributes to the 
patients’ database. Sometimes, the information of the laboratory tests is redundant, what not 
only may lead to saturation, but even to a decline of information. Furthermore, the 
interpretation of the results obtained from some of the analytical methods used in the 
clinical and hematological laboratories has become more and more complex. This is caused 
by for example the improved separation power of the analytical instrumentation (e.g. 
capillary GC) and by the increased demand for measurement of analytes in authentic 
sample material, which is often a complex sample matrix containing many interfering 
substances. Both phenomena, the increased amount of analyte information obtained from a 
single sample, and difficulties with the interpretation of the test results obtained from a 
complex sample matrix has led to the development and application of statistical and 
mathematical methods in the past decades.  

These statistical and mathematical methods have resulted in new analytical applications, 
often by omitting the otherwise imperative sample pretreatment. Svante Wold was the first 
investigator who applied the so-called ‘chemometrics’ to organic chemistry applications. 
Nowadays, many of the statistical and mathematical methods developed for analytical 
chemistry applications, are referred to as ‘chemometrics’. Chemometrics is concerned with 
the application of mathematical and statistical methods, as well as those methods based on 
mathematical logic, to extract useful information from chemical measurements (106). 
Similar disciplines have emerged in other fields of science, such as biometrics, 
psychometrics, econometrics or medicometrics. Sometimes, the chemometric techniques 
are applied to sub-fields of analytical chemistry, such as qualimetrics, which is concerned 
with the use of chemometric methods to improve the quality control and quality assurance, 
or pharmacometrics in which the methods are used in the synthesis, analysis and 
formulation of pharmaceuticals. 
Medicometrics has relationship to the medical sciences, because the methods evaluate 
clinical and laboratory test results from patients (107). Medicometrics is not involved in the 
administration of patient medical records, but e.g. in the extraction of useful information 
from chemical and hematological data (108;109), automated pattern recognition of signal 
processes such as electrocardiograms (110) and electroencephalograms (111), pattern 
recognition of digitized microscopic images of urothelial cell carcinoma (112) or malignant 
gastric cells (113), simulation studies of arm movements (114), validation of test results of 
patient samples by means of a rule based system (115) or a statistical method (116), and 
other application areas.  
 
During their development, the medicometric methods applied to laboratory test results 
always need specific background information about the patients (diagnosis, medication, 
gender, etc.). Chemometrics on the other hand can be performed within the walls of the 
laboratory, without needing any patient background information. It can be used to optimize 
the analytical, or post-analytical processes. 
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Our own studies with respect to the analysis of urinary calculi and fecal fat and concerned 
with difficult quantitative interpretations of infrared spectra, made use of chemometrics. 
Apart from these studies, chemometric methods are applied to a great number of analytical 
techniques, such as gas chromatography, high-pressure liquid chromatography (HPLC), 
mass spectrometry, infrared spectroscopy, etc. The chemometric methods may be 
subdivided in the following categories: statistics (e.g. method validation, sampling 
strategies, detection limits, etc), optimization (minimization or maximization of a function 
of one or more independent variables, e.g. mixture designs, liquid/liquid extractions, HPLC 
parameters, etc.), signal processing (digital filtering, smoothing, background correction, 
domain transformations, trend analysis, image analysis, etc), resolution (e.g. identification 
of peak patterns in unresolved regions), parameter estimation (curve fitting and 
mathematical modeling of chemical properties of e.g. spectral band shapes), structure-
activity relationships (relation of the molecular structure to its chemical, physical or 
biological properties), pattern recognition (classification of an unknown into one of a set of 
predetermined classes), artificial intelligence (e.g. automated chemical workstations, 
including a scheduler for the initiation and monitoring of parallel experiments), calibration 
(relating or modeling measured responses to the composition of a set of analytes), exploring 
chemical data (for understanding/finding underlying phenomena), and library searching 
(identification of unknowns and qualitative analysis of mixtures). Our own studies only 
make use of calibration techniques (partial least squares regression and neural networks) 
and simple library search algorithms. These methods are described in the following 
chapters. Interested readers in other methods may find reference to a large number of 
articles concerning the development and application of chemometric methods applied to 
each of the above-mentioned categories, in a series of review articles (106;117-119). A 
general introduction to chemometrics may be found in a book of Massart et al (120).  
 
Data structures used in chemometrics 
Chemometrics is concerned with the extraction of ‘useful’ information from measurements. 
The characteristics of these data are generally stored in one or two data sets. Some of the 
chemometric techniques will, however, work on only one data set. Such a data set is 
normally referred to as the X data and they may contain the more easily accessible 
variables, such as spectroscopic data (NIR, UV-VIS), chromatographic data (GC, HPLC, 
MS), process measurements, image analysis data, etc. Table 9 shows an example of a data 
set, containing absorbance data of some patient samples. The data set consists of a number 
of objects (patient samples). Each object is a set of values such as absorbances, measured at 
different variables (wavenumbers). In this data set each line represents one object and each 
column represents one variable. Statisticians have found matrix mathematics a very useful 
concept for the formulation of data sets, because they permit extremely efficient and 
accurate calculations for carrying out multivariable analyses on large data sets. Therefore, 
chemometricians always use matrix formulations for there data sets. For this reason the data 
set of table 9 would normally be defined as matrix X. 
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Table 9. Data set X containing spectroscopic data (Absorbances). 

Patient sample Wavenumber (cm-1) 
 2000 1996 1992 1988 1984 1980 1976 1972 …… 
1 1.8 1.9 2.0 1.8 1.6 1.2 0.8 0.4  
2 1.7 1.9 2.3 1.9 1.4 0.8 0.5 0.3  
3 1.2 1.4 1.2 1.0 0.8 …..    
…….          

 
A matrix is defined as a rectangular array of numbers. For example the data of table 9 
would look like: 
 

 

















…
=

..   0.8   1.0   1.2   1.4   1.2

0.3   0.5   0.8   1.4   1.9   2.3   1.9   1.7

0.4   0.8   1.2   1.6   1.8   2.0   1.9   1.8

X  

 
The dimension of a table is often defined as XNxK in which N is the number of rows (1..N) 
and K the number of columns (1..K). In case of the example, the dimension of the matrix X 
would be X3x8. Matrices may contain only one row, or column. These matrices are normally 
referred to as a row vector (e.g. x’(1x4) = [-1 15 3 -2]), or a column vector (e.g. x4x1). As 
mentioned before, matrices are used in almost any kind of statistical calculation. More 
information about mathematical matrix manipulations, such as matrix inversion, 
multiplication, transposition, etc. can be found elsewhere (121;122). 
 
By definition, the chemometric techniques are applied on matrices for the extraction of 
information from chemical measurement data. In case of chemical problems where only a 
single (X) matrix is available, principal component analysis (PCA) is one of the most 
commonly used techniques for this purpose. This technique extracts systematic variation 
from the data by turning the interrelated X-variables into unrelated ones. This is performed 
in such a way that the original dimensionality of the problem may be reduced without 
losing much of the information (123). The so called data structure modeling, or data 
decomposition of PCA can be used for e.g. variable reduction by selection of the most 
important variables, for finding patterns, or for the classification of variables or groups of 
objects (samples) that are similar. PCA can be schematized as follows: 
 
 
 

Except for the analysis of one X-matrix, chemometrics is also often involved in the 
determination of the relation of the X-matrix with another matrix. The other matrix is often 
referred to as the Y-matrix. The Y-matrix may be a vector or a matrix containing variables 
such as the chemical concentrations, product qualities, etc. In order to find a useful relation 
between the two matrices it is necessary e.g. to determine the regression relationship 
between the two data sets. In this case the two data sets contain ‘known data’, also referred 
to as the training set, to make a model of the relationship. This process is called calibration. 
The calibration model (comparable with regression coefficients of a regression line) may be 

X-data PCA model 
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used to predict ‘unknown’ Y-values from the measurements of new X-variables. Both 
calibration and prediction is schematized as follows: 
 
Calibration:  
 
 
Prediction: 
 
 
Because most of the post-analytical quantifications of our studies described in Part I and II 
were based on multivariate calibration and prediction, the next two chapters will describe 
some of the multivariate chemometric quantification methods in greater detail. 
 
 
3.2. Multivariate calibration methods 
 
3.2.1. PLS regression  

 
Introduction 
Generally speaking, every mathematical calibration model has a structure part representing 
the systematic variation and a residual part representing the difference between the data and 
the structure (DATA = STRUCTURE + RESIDUALS). The mathematical description of 
the well known standard linear regression equation is: y= b0 +b1x + e, in which b0 is the 
intercept, b1 the slope of the regression line and e the residuals. This formula may be 
rewritten as y = Xb + e, in which Xb represents the structure. Good calibration modeling 
requires attention both to the structure and the residual parts. The prior aim to calibrate is to 
determine a function f( ) that allows quantitative predictions of Y (e.g. one or more 
concentrations) from X (e.g. measured absorbances):  

f(X)Ŷ =  in which Ŷ  is a matrix with the predicted y-values and X are the  

 predictor variables 
 

The accuracy of the outcome of this function will only be good enough if there is sufficient 
correlation between X and Y. Although this is not the primary aim of their studies, 
chemometricians should always be concerned about the causal relation of their 
observations, in order to understand what the calibration data mean. The mathematical 
methods for simple linear regression and sophisticated multivariate calibration methods 
such as PLS, do not require causal understanding before starting calibration. This lack of 
insight can be compensated by the choice of empirical, but well considered calibration 
objects (training data). The training samples should be collected by selection of a set of 
representative samples with sufficient variability, in order to take care that the training data 
will span the whole concentration space. Further understanding about the X-Y relation can 
be obtained during the subsequent calibrations and predictions, by studying the structures 
and residuals of the objects (124;125). Sometimes it may help if some causal relationship is 
known in advance. In such cases, applying a proper transformation function could e.g. 
linearize known nonlinearities before calibration.  

X-data Y-data + Calibration model 

X-data Calibration model + Y-data 
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Figure 17A shows a part of an IR spectrum where it is presumed that the absorbance band 
(x) at wavelength 1320 nm accounts for the entire information about the concentration (y) 
of a certain component. In this case we can calibrate and predict the concentration of that 
component entirely on the basis of the absorbance of that band. We applied linear 
regression in our own studies on IR spectra obtained from petroleum ether and chloroform 
extracts of stool samples, for the quantitative prediction of fecal fat (see Part I).  
 
A well-known problem in clinical chemistry is interference or the lack of selectivity. These 
interferences, or chemical matrix effects, may occur from other chemical constituents (e.g. 
interaction by overlapping IR bands), from physical phenomena (e.g. light scattering) or 
from the measurement process itself (e.g. temperature variation during measurement). 
Traditionally, interferences had to be removed physically, e.g. by extraction, filtering, or 
centrifuging, to ensure selectivity and in order to ensure linearity within the narrow range of 
the instrument scales. Unfortunately, this is time consuming and expensive. Today, there is 
a general tendency to measure samples with a minimum of sample pre-treatment 
(purification), but this often results in loss of selectivity. However by applying modern 
chemometric multivariate calibration techniques, interferences and non-linearity are often 
less of a problem. 

 

Figure 17. Part of an IR spectrum showing the absorbance band(s) at one or more wavelengths that are used for 
linear regression (A), multiple linear regression (B) and partial least-squares regression (C). 
 
 
The calibration models are generally divided in the following distinct ways: 
- Inverse calibration. As described before, the major purpose of calibration is prediction, 

not causal modeling. This is therefore called the forward direction from X to Y, with the 
predictor formula )X(fŶ = . The predictor can be obtained by regressing the calibration 

data Y on X, using the following model: 

Y = XB + F 

where X represents e.g. the spectra (absorbances), Y the concentrations of one or more 
analytes of a sample, B the regression coefficients and F the residuals. Standard linear 
regression and multiple linear regression (MLR) models used for prediction of the 
analyte concentrations are typical examples of inverse calibration. A brief description 
of MLR will be given later. 
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- Classical calibration. This is the traditional way to present the functional relationship 
between X and Y. This relationship resembles the causal structure of most analytical 
applications. In this case the predicting variables X (e.g. absorbances) are caused by the 
analytes Y (e.g. concentrations), and can be described with the predictor formula 

)Y(gX̂ = . The Beer’s law in spectroscopy is a well-known example of this last 

relationship, namely: 
A = εcl (A, Absorbance; c, concentration; ε, molar extinction coefficient; l, pathlength) 

- Regression on latent variables. The predictor formula of this kind of models is adapted 
from the domain of inverse calibrations and is generally described as )U,X(fŶ =  in 

which U are the unmeasured phenomena. In this relationship both X (e.g. absorbances) 
and Y (e.g. concentrations) are influenced by unmeasured interferents U. In this case, 
the concentration is directly predicted from the absorbances, avoiding explicit 
determinations of the component and interference concentrations. In case of IR 
spectroscopy, the interference problem may be solved by measuring the absorbances at 
several different spectral wavenumbers. 

To solve the predictor )U,X(fŶ = , the so-called ‘regression on latent variables 

models’ is used as calibration model. In general these models are described as follows: 

T ⇐  f1(X) (T, represents systematic structure, possibly unidentified) 
X ⇐  f3(T) + E (E, residuals)   
Y ⇐  f2(T) + F (F, residuals) 

Both Principal Component Regression (PCR) and Partial Leased Squares (PLS) 
regression belong to this class of models and will be described in one of the following 
paragraphs. More information about inverse and classical calibration may be found 
elsewhere (126). 

 
Before describing PLS regression in more detail, some background information is needed 
about MLR, PCA and PCR.  
 
 
Multiple linear regression  
Classical MLR analysis deals with the estimation of the conditional mean of a random 
variable y from several X-variables (see Fig. 17B), rather than from a single x as in 
standard linear regression. The basic equation relating to these variables may be written as:  

yi = β0 + β1Xi1 + …. + βkXik + ei  

This equation describes that the y-value of the i-th object (individual, or sample) is a 

function of k+1 regression coefficients (βs) and k independent X-variables of the i-th 
object. Furthermore, the equation describes the residual error ei of the i-th object. The 
coefficient β0 represents the systematic offset, whereas the other β coefficients express the 
rate of change of the respective X-variables. The variable y is usually referred to as 
dependant, because its value is predicted on the basis of the known values of the 
independent X-variables.  
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The matrix (X) and vectors (y, e and β) of the previous model may be described as follows: 
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which n is the number of objects (samples) and k is the number of Xs. The previous 
equation may be written in a simple matrix notation: y = Xβ + e. To obtain reliable 
predictions from the calibration model, it is important that some assumptions are fulfilled 
during calibration, that is: the n residuals (e) must be independent and must follow a 
multivariate normal distribution with constant variance [homoscedastic] (127). If the 
number of objects (n) is larger than the number of variables (k), the regression coefficients 
of the previous calibration model can be estimated with the following matrix formula: 

y'X)X'X(ˆ 1−=β  (121)1. The y-values of unknown samples may be predicted by using the 

estimated regression coefficients with the following formula: β= ˆXŷ
 

. 

 
When applying MLR, it is important to work with a number of predictors (X) as small as 
possible. This is needed due to the principle of scientific parsimony, to obtain an optimal 
n/k (object/variable) ratio and also because the incremental information content of the new 
variables is often low as the measurements (e.g. absorbances) tend to overlap in content 
because of their possible intercorrelations (see e.g. Fig 17C). Since MLR is a mathematical 
maximization procedure, there is a considerable opportunity for capitalization of chance. 
Therefore, an n/k ratio greater or equal to 15 is needed in order to obtain a reliable 
regression equation and to provide sufficient reproducible predictive power. As a rule of 
thumb, it is recommended to select those predictors that highly correlate with the dependent 
variable (y), but that have low intercorrelations. Most statistical computer programs (e.g. 
SPSS) for MLR regression contain the three most popular procedures for selection of a 
good set of predictors, namely: forward, backward and stepwise selection (127;128). 
Another less commonly used selection procedure is the all possible subset regression 
procedure, which computes the multiple correlation coefficients (R2) and regression 
equations for all possible subsets of predictor variables (128).  
 
In practice, a problem called collinearity or multicollinearity may occur when some of the 
X-variables are redundant, because they are highly intercorrelated. The term collinearity is 
used to indicate that one or more of the predictors are approximately or exactly linear 
dependent of the others (121). As mentioned before, ideally a high R2 would be obtained 
when each of the predictors is significantly correlated with the dependent y-variable and 
being uncorrelated with each other, so that they are able to predict different parts of the 
variance of y. Unfortunately, in practice this does not often occur, since almost all so-called 
‘independent’ X-variables are intercorrelated to some degree. The consequence of 
collinearity can be illustrated with the following two-independent variable regression 
example: 

                                            
1 'X , transpose of matrix X; 1)X'X( − , the inverse of the matrix product X'X  
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yi = β0 + β1Xi1 + β2Xi2 + ei In general, 1β̂ and 2β̂ are calculated as follows: 
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)X,X(r1
1cˆ

212
 j  j    for j=1 and j=2, cj is a value depending on the  

data and r2(X1,X2) is the squared correlation coefficient between both predictors. The term 
between the square brackets is also referred to as the variance inflation factor (VIF). From 
this equation it follows that the estimated regression coefficients become indeterminate if 
the correlation coefficient of X1 and X2 is one (VIF = 1/0 = ?). Thus, for the MLR solution, 
multicollinearity in X may have a detrimental effect on the computed coefficients of β̂  and 
render them useless for prediction of ŷ . Fortunately, certain kinds of collinearity such as 

those involved in polynomial regression can be expressed as scaling problems and therefore 
can easily be resolved by subtraction of a constant (centering). In e.g. IR spectroscopy it is 
sometimes necessary to retain a great number of X-variables in order to get calibration 
models that include all spectral information and in order to stabilize the predictions against 
noise. In such cases, a great number of consecutive absorbances is used for the calibration 
and prediction of the component(s) of interest (Fig. 17C). PCA is an alternative 
computational method for rank reduction to avoid the impasse created by collinearity or 
near collinearity and forms the basis of the multivariate calibration methods that will be 
described in the following paragraphs.  

Principal Component Analysis 
There are three common problems when we want to predict Y from X (126): 
- Collinearity: There is interrelation and hence redundancy between the X-variables. 
- Lack of sensitivity: No single X-variable is sufficient to predict y. 
- Lack of knowledge: A priori information of the mechanisms behind the data may be 

incomplete or wrong.  

The most important way of dealing with these problems is PCA, which essentially 
transforms the correlated X-variables into new uncorrelated ones. Besides creating 
uncorrelated variables, PCA is a general framework for ‘rank-reduction’ or ‘data-
compression’. The general characteristic of PCA are summarized and depicted in Figure 18. 
In PCA the original X-variables are treated equally, i.e. they are not divided into dependent 
and independent variables, as in regression variables.  
 
The new variables of PCA are called the ‘principal components’ (or factors). To simplify 
the interpretation, the data of the original variables are normally scaled by subtraction of the 
sample mean from each observation (centering), thus obtaining e.g.: 
 111 XXx −= ,  222 XXx −= , …….. kkk XXx −=  (for k X-variables)2 

 
Each principal component is a linear combination of the original X-variables:  
 t1 = v11x1 + v12x2 + …. + v1kxk t1 is called the first principal component 
 t2 = v21x1 + v22x2 + …. + v2kxk t2 is called the second principal component 
 etc. tk is called the k-th principal component 

                                            
2 X , mean of variable X 



Chemometrics 

 

 
47 

 

In matrix terminology the linear combinations (PCs) are described as: T = XV  
(V, PCA coefficients).  
 

 
Figure 18. General purpose of principal component analysis. 

 
One measure of the amount of information represented by each principal component is its 
variance. PCA is performed in such a way that the principal components are arranged in 
order of decreasing variance. Thus the most informative principal component is the first, 
and the least informative is the last (a variable with zero variance does not distinguish 
between the members of the population). The coefficients V of the PCA model are chosen 
in such a way to satisfy the following requirements: 
1. The variance of t1 is as large as possible [Var(t1) ≥ Var(t2) ≥ ….. ≥ Var(tk)] 
2. The k principal components t1, t2, … tk are uncorrelated  

3. 1vvvvvv k
'
k2

'
21

'
1 ==== L  (the sum of the squared coefficients or scalars are one) 

 
The normalization of the coefficients (see point 3) is needed as a constraint to prevent that 
the variances of the principal components (t1..k) become arbitrarily large. A plot to illustrate 
the transformation of bivariate hypothetical data to principal components is given in Figure 
19. This figure shows the scatter plot of the original variables X1 and X2 (Fig 19A) and the 
centered variables x1 and x2 ( iii XXx −= , i=1, 2) (Fig. 19B). The probability ellipse 

describes the relation between x1 and x2. The straight (dotted) line coinciding with the 
longest axis of the ellipse is called the first principal axis of the ellipse, and it is not 
surprising that the projection onto this axis is identical to the first principal component (t1 in 
Fig. 19C). The second coordinate axis of the new coordinate system is uniquely defined by 
the following two conditions: it has to pass through the origin of the ellipse ( 0xx 21 == ), 

and it has to be perpendicular or orthogonal (uncorrelated) to the first axis. This second 
principal axis of the ellipse is the second principal component (t2). Figure 19C shows the 
new coordinate system with the first and second principal components. The data points in 
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this plot are usually called the factor scores. These scores express the relation between the 
objects and are the projected locations of the objects on the components. In case of higher 
dimensions, the ellipse is replaced by a sphere (k=3) or a hypersphere (k>3).  
 
Mathematical treatment of PCA consists mainly of the computation of the so-called 
eigenvalues of the covariance matrix (or correlation matrix). The eigenvalue (λi) is the 
variance of the principal component (ti). The eigenvalues of all principal components 
always add up to the total variance of the k original independent X-variables 

( ∑
=

λ=
k

1i
i

2
totalss ). Another characteristic of PCA is the so-called loading. PCA actually 

performs a redistribution of the variance of the original X-variables. The coefficients (v) of 
the principal components (linear combination of the X-variables) are usually transformed to 
factor loadings by dividing the coefficients by the square root of the corresponding 

eigenvalue of the component. Thus, if )v,,v,v(v jp2j1j
'
j K=  is the row-vector with the 

coefficients of the p original variables corresponding to the j-th largest eigenvalue jλ , than 

the loading of the k-th original variable on the j-th component is calculated by jjkv λ . 

These factor loadings express the variable/component relation and therefore reveal which of 
the X-variables are dominant in determining the model, and tell how they are related to 
each other. The set of loadings is also referred to as the i-th eigenvector (latent vector or 
factor). 
 

 
Figure 19. Principle of Principal Component Analysis. Scatterplots of bivariate hypothetical data (A), centered X-
data (B) and after PCA transformation (C) 
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As mentioned before, one of the objectives of PCA is reduction of the dimensionality. 
Because the principal components are arranged in decreasing order of their variances 
(eigenvalues), it is common to select only the first few as representatives of the original set 
of X-variables {xi, i = 1, 2, …k). The Kaiser criterion (129) is probably the most widely 
used criterion to select the number of components }t̂,,t̂{T̂ A1 L=  (A<k). According to the 

Kaiser criterion, the principal components whose eigenvalues are less than the average, i.e. 
less than one if a correlation matrix of the X-variables has been used, have to be excluded. 
Another often-used method is the so-called scree test (130). With this method the 
magnitude of the eigenvalues (vertical axis) are plotted against the ordinal component 
numbers (Figure 20). Using this method, a recommendation is to retain only eigenvalues 
(and hence components) in the sharp descend and to discard these where the rate of change 
between the successive eigenvalues starts to become small. Unfortunately, the method is 
sometimes slightly conservative by retaining too much components. Several other rules for 
deciding how many components to retain exist. The selection of the dimensionality needs 
much attention, but provision of a detailed review of these rules is out of scope of this 
introduction. A good summary of these rules may be found elsewhere (127). The PC model, 
which describes the decomposition of the X-variables, is generally denoted as: 

X = TP' + E      in which P' is the transposed loading matrix and E the residuals  
 

 
Figure 20. Scree plot expressing the relation between the eigenvalues and the component numbers 

 
The PCA method is illustrated with a simple data set used by Hemel et al. (131). Although 
these data are intended for classification of patients, they illustrate the technique very well. 
Clinical chemical parameters creatinine (CREAT), glutamic pyruvic transaminase (GGT), 
total bilirubin (TBI), lactate dehydrogenase (LDH), aspartate aminotransferase (ASAT) and 
alanine aminotransferase (ALAT) were measured in serum samples from 27 patients 
suffering from heart (n=9), liver (n=9) and kidney (n=9) disease. PCA was performed using 
the correlation matrix of the six analyte results of the 27 patients samples. Table 10 shows 
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the eigenvalues, the proportional and cumulative proportional variances of the 6 principal 
components obtained from the 6 analytical parameters. From this table it can be seen that 
the last two latent vectors (component 5 and 6) only contain 1% and 0.2% of total variance. 
They can be removed without loosing any information. Based on the Kaiser criterion only 
the first two components should be retained, because their eigenvalues are both greater than 
one.  
 

Table 10. Eigenvalues of the patient data set. 

Component Eigenvalue % of variance Cumulative % 
1 2.394 39.9 39.9 
2 1.983 33.1 73.0 
3 0.830 13.8 86.8 
4 0.710 11.8 98.6 
5 0.062 1.0 99.7 
6 0.019 0.2 100.0 

  
Figure 21 shows the score plot (A) and the loading plot (B) of the first two components of 
these data. The first and second eigenvalues are about equally important with 40% and 33% 
of total variance, respectively. From the score plot (Fig 21A) it can be seen that the data of 
the 3 diagnosis groups are perfectly separated from each other. Furthermore, it can be seen 
that the group of liver patients contains an extreme outlier (probably a patient with a viral 
infection) and the group of heart patients contains 2 outliers (probably caused by acute 
myocardial damage).  
 

 
Figure 21. Score and loading plot of the data set of Hemel et al. 

 
From the loading plot (Fig. 21B) it can be seen that all variables have moderate or high 
loadings on at least one of the two components. From these loadings it can be concluded 
that all analytes are important in this PCA model. It should be noticed that the two 
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components are totally uncorrelated to each other (inherent to PCA), so that no information 
can be obtained from that point of view. The first component of the loading plot shows that 
the loading value of CREAT is opposite to the loadings of LDH, ALAT and ASAT. In this 
case we have a component that is also called a bipolar factor. These findings can be related 
to the results of the score plot. Both the loading of the CREAT, as well as the scores of the 
kidney patients can be found at the left side of the loading and score plot, respectively. 
These findings are in line with the expectation that a high outcome of CREAT is found in 
kidney patients. The same is true with the LDH, ALAT and ASAT parameters and their 
relation to hearth diseases. The second component shows the contrast between the GGT, 
TBI and the ALAT, ASAT and LDH loadings, respectively (Fig. 21A). Therefore, this 
component is mainly responsible for the separation between the scores of the liver and 
hearth disease patients (Fig. 21A). 
 
From this example it can be concluded that PCA can: graphically depict outliers, show the 
relevance and the relation of the original variables to the scores, result in less uncorrelated, 
but more meaningful new variables (six X-variables ! two components), and can be used 
for classification.  
 
If has been suggested that the sample size to obtain a reliable number of factors with PCA 
should be at least 5 samples per X-variable, and not less than 100 samples per analysis 
(132). Because of its data-reduction qualities, PCA forms the basis of the multivariate 
calibration methods as described in the next paragraphs. 
 
More general background information about PCA can be found in books of e.g. Stevens 
(127), Flury et al. (133), or Afifi et al. (128), whereas more mathematical oriented 
background can be found in Mardia et al. (122) and Morrison (123). 
 
Principal component regression (PCR) 
PCR, a so-called bilinear calibration method, performs the regression of Y on selected 
principal components of X (see Fig. 22). PCR is most suitable in case of a single Y-variable 
(just like MLR), since it handles one Y-variable at a time. In case of several Y-variables it 
is possible to perform several subsequent PCR runs for one Y-variable at a time, but PLS is 
a better choice if the Y-variables are correlated. 
 
In the discussion about MLR, it was noted that the estimated regression coefficients will be 
very imprecise if the independent variables are highly interrelated. In the previous 
paragraph dimension reduction was obtained by performing PCA. Using PCA, often ≤ 5 
components will account for most of the variance of the X-variables and become the new 
predictors in the regression analysis. As a consequence, much better N/k (object/variable) 
ratios will be obtained for the regression analysis. PCR is in essence a MLR analysis on the 
selected principal components, instead of the original X-variables. The choice of the 
components in the regression context is however somewhat different from that in PCA. In 
contrast to MLR, the principal components with the largest variances are selected in PCA in 
order explain as much of the total variation of the X-variables as possible. In MLR the 
correlations (explained variances) with each of the dependent X-variables must be defined. 
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Fortunately, the components with the largest variation (highest eigenvalues) often have 
good correlation with the dependent Y-variable(s). 
 

 

Figure 22. Principal component regression by regressing the Y-variables onto the latent vectors ( T̂ ) representing 
the hidden main variations of the X-data. 

 PCR on the centered X and Y data can be formulated as follows: 

Calibration: 
 V̂XT̂ =  The scores T̂  obtained from the linear combinations of X; 
  V, loadings of the X-variables 
 EPT̂X +′=  decomposition of the X-variables;  
  in PCR the loadings P are equal to V; E, residuals  
 FQT̂Y +′=  the loadings Q may be compared to β in MLR; F, residuals 
Prediction: 
 V̂xt̂ ii ′=  ix′ , the measured values (e.g. Abs.) of prediction sample i 

 Q̂t̂ŷ ii ′=  iŷ , the predicted outcome of sample i 

 P̂t̂-xê iii ′′′=  iê , the residual of sample i 
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If only the first few factors are collected in T̂ , Ê  represent the residuals in the model 
because X is approximated by PT̂ ′ . But, if all the A=k factors would have been extracted 
from X, than X can be written as PT̂X ′= . In this case Q would be equal to the regression 
coefficients β in MLR. 
Selection of the optimal number of factors (eigenvectors) is PCR also an important issue. 
This selection is described in a next paragraph treating some of additional calibration 
features. More information about PCR can be found elsewhere (122;126). 
 
Partial least-squares regression 
PLS is also a bilinear calibration method. It usually handles several Y-variables better than 
both PCR and MLR, and should be chosen in case several intercorrelated Y-variables have 
to modeled. Another important difference of PLS from PCR is that PLS uses the Y-variance 
actively during the decomposition of the X-variables. By balancing the X-, and Y-
information, the PLS method reduces the effect of large but unrelated X-variations in the 
calibration model. PLS therefore, produces a calibration model with as few dimensions as 
possible and in such a way that these dimensions are as relevant as possible. As a 
consequence, the PLS method has somewhat greater flexibility compared to PCR, but at the 
expense of the need of an extra loading vector, referred to as the loading weights W. As a 
drawback, PLS has a stronger tendency to overfit noisy Y-data than PCR (126). Usually 
there are two PLS techniques employed: PLS1 for one Y-variable and PLS2 for the 
simultaneous calibration of several Y-variables. As described, in PLS calibration the Y-data 
affect the data compression modeling of X. The different Y-variables will therefore give 

somewhat different modeling of X, and hence different regression factors ( T̂ ). With the 
PLS1 regression algorithm, each y-variable is modeled separately. With the PLS2 
regression algorithm, a jointly optimized calibration is accommodated for several Y-
variables by using a linear combination of the Y-variables. The PLS2 analysis may be 
especially useful during calibration, if the Y-variables are strongly intercorrelated with each 
other. The PLS2 algorithm uses this intercorrelation structure to stabilize the random noise 
of the individual Y-variables. However, if the different Y-variables have different types of 
curvature in their relationship to the X-variables, the PLS2 solution will find a suboptimal 
approximation solution. In such cases it may be advantageous to use separate PLS1 
modeling for each separate y-variable. Good mathematical descriptions of both PLS 
algorithms, including the use of the methods with several samples can be found in Martens 
et al. (126).  
 
General features of calibration 
Data pretreatment 
Except for the previously described centering (see PCA paragraph) various pretreatments 
exist to obtain more easily interpretable models. This includes linearization of strong non-
linearities, weighting, normalization and other transformations. The book of Martens et al. 
(126) treats these issues in a comprehensive way, including applications. 
 
Calibration and prediction 
Every calibration model has to be validated before it can be used for prediction purposes. 
The average prediction error is often used to get an impression about the predictive 
performance of the calibration model. This average prediction error is frequently denoted as 
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the mean squared error (MSE) or the root of the mean square error (RMSE = √ MSE). The 
MSE is generally formulated as: 

2)ŷy(EMSE −=  in which E  is the expectation of the squared differences 

)ŷy( − ; y  the real outcome; ŷ  the estimated outcome 

of a sample. 

To obtain reliable predictions of the ‘unknown’ samples, the calibration modeling process 
is usually subdivided in three phases, the training-, the calibration validation and the 
prediction-testing phase (see Figure 23). Each step is associated with a separate dataset. In 
the context of (multivariate) calibration two kinds of validations should be distinguished. 
The first validation step concerns the validation of the calibration data themselves and is 
also referred to as ‘internal validation’. In case of bilinear calibration models (PCR and 
PLS) internal validation is used to assist in identifying the optimal number of factors, which 
should be retained. With bilinear calibration models, the MSE (SEC: standard error of 
calibration) of the calibration data (training-set) will continue to be reduced, when more 
factors are included (see Figure 24). The SEC, however, does not reflect the real predictive 
ability of a calibration model. Therefore a separate set of samples is needed, referred to as 
validation samples, to determine the actual predictive ability. At low model complexity (not 
enough factors), the MSE (SEP: standard error of prediction) of the validation samples is 
high (Fig. 24). In this case, the calibration model is underfitted due to e.g. unmodeled 
interferences. After increasing the number of factors, the SEP will begin to rise again and 
this indicates how many factors should be retained − usually one factor less than the 
minimum SEP. Calibration beyond the optimum model complexity will result in an 
opposite trend with increasing SEP values, because the model starts to adapt to noise 
instead of to the relevant features of the data.  
 

 
Figure 23. Calibration and validation steps necessary before prediction. 

 
There are several strategies for selecting the validation samples for the internal validation. 
Ideally, the best strategy is to have a set of samples that are independent of the training 
samples. This method can be used if sufficient calibration samples are available to split the 
dataset into two halves, one for the calibration and one for the calibration validation. 
Unfortunately, it is often difficult to obtain a sufficient number of authentic samples to form 
a representative sample set for the calibration process itself. The size of the independent 
validation set is ideally as large as the training set, but must be at least ≥ 25% than the 
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number of training samples. Another validation strategy is the so-called cross-validation 
(CV) method (134), which allows to validate the calibration without using an extra set of 
validation samples. CV is performed by partitioning the calibration set into various careful 
selected data subsets. With the current powerful computers the calibration set is often 
partitioned into subsets of size one, which is also referred to as full CV or the leave-one-
out-method. A drawback of the crossvalidation methods is that the results are often 
suboptimal (slightly overoptimistic), when compared to the results obtained with a set of 
independent validation samples. In this case, the samples are repeatedly taken out and 
replaced out of the calibration set (n) one by one and the calibration is successively 
performed on the remaining n-1 samples. 
 

 
Figure 24. Prediction error as function of the complexity (dimensionality) of the training- and the validation-data. 

The sample left out of the calibration set is treated as an independent prediction or 
validation sample. This process is repeated until all the samples have been left out and 
predicted. The SEP of the cross-validated samples is also referred to as the standard error of 
cross-validation (SECV) and can be plotted in a graph as Figure 24.  
 
The second important validation step after the calibration modeling is needed to obtain an 
objective assessment of the magnitude of the prediction errors (Figure 23). After the 
optimal dimensionality has been determined, the predictive ability of the model must 
always be determined by using an independent set of data, also referred to as the test- or 



Introduction 

 

 
56 
 

external validation-set. If the results form the prediction testing is satisfactory, the 
calibration model may be used for the prediction of the results of ‘unknown samples’. 
More information about some of the sampling strategies for validation and 
recommendations about the sample set sizes may be found in a paper of Davies (135).  
 
Outlier detection 
In calibration modeling outlier detection is very important. Outliers are measurement values 
that do not fit with the rest of the dataset. These outliers may arise from different kinds of 
measurement errors or misreadings. The outliers may be detected in the X-, or Y-matrix or 
occur in the X-Y relationship. These outliers may seriously affect the future predictions 
using the calibration model. Detection of the abnormal observations is therefore important. 
Once detected, the observations should be corrected or be removed from the dataset, if they 
appear to damage the calibration model. However, whenever possible one should try to 
understand the reason for every outlier. Outliers can be detected in the score and loading 
plots (see the SMAC dataset in the PCA paragraph) or by using other outlier detection 
criteria (e.g. studentized residuals, leverage warnings, etc.). For comprehensive background 
information with respect to outliers statistics we refer to e.g. Kleinbaum et al. (121) and 
Martens et al. (126). 
 
 
3.2.2. Neural networks  
 
Introduction 
In the previous chapter about PLS regression some methods were described that were based 
on precisely defined mathematical and statistical algorithms. Artificial neural networks 
(ANNs) use a different approach. They are based on algorithms that are capable of storing 
the various characteristics of different input patterns (e.g. absorbance and concentration 
patterns), in a system of multiple connections between so-called neurons. As can be 
guessed by the name, artificial neural networks are models adapted from the structures in 
the brain that makes thoughts possible. The brain interprets imprecise information from the 
senses and learns − without any explicit instructions − to create the internal representations 
enabling many skills. In the brain, a typical neuron collects many signals through a host of 
fine structures, called dendrites (Figure 25). The neuron sends spikes of electrical activity 
through a thin strand known as the axon, which ends in thousands of branches. At the end 
of each branch, a structure called synapse converts the activity from the axon into electrical 
effects that inhibit or excite activity to the connected (downstream) neurons (136).  
 
Artificial neurons 
ANNs do not reflect the detailed geometry of the dendrites, axon and synapses, but are 
made of much simpler, structured patterns of interconnected artificial neurons. These 
neurons (nodes) express a single number, similar to the electrical output of the biological 
neurons that represents the rate of firing or activity. Figure 26 illustrates the concept of a 
type of an artificial neuron. Both X1 and X2 represent a measured value (e.g. absorbance), 
whereas Y is the outcome (e.g. concentration) of the neuron. After applying a certain 
threshold function to the sum of the X-values, the outcome of the neuron will be forced to 
either zero or one (Fig. 26). Normally, an artificial neuron is slightly more complex. 
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Figure 25. Illustration of a biological neuron. 

 
 

 
Figure 26. Artificial neuron with a simple threshold function. 

The nodes of an ANN are made up of mathematical formulas, in two interconnected units. 
In the first unit of the artificial neuron the function of the synapse is modeled by a 
modifiable weight, which is associated with each connection. This part of the node is a 
computational device, which receives a number of input signals (values). Each input is 
associated with a weight (number), which represents the stimulating or inhibiting influence 
of the input signal. These weighted inputs are added together to create a quantity, which is 
called the net input (Figure 27). This weighted sum is formulated as:  

∑
=

=
n

1i
iijj xwnet  wij denotes the weight connecting the neuron i in the previous layer  

(see later) to neuron j in the current layer; xi denotes the i-th input value of the n 
input signals.  
 

Because in multilayer networks (see later) the input value xi of the l-th (current) layer is 
usually the output (out) of the (l-1)-st previous layer, the last equation can be written as: 
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The second unit (bottom half of Fig. 27) of the artificial neuron uses an input-output 
function that transforms the total input value to an outgoing activity. 
 
Transfer functions 
The behaviour of a node depends on both the weights and the input-output functions. These 
functions, also called activation functions, may be defined as: out = f(net). 
These functions are categorized in three classes: linear, threshold and nonlinear (136). If a 

neuron does not transform its net input ( ∑
=

=
n

1i
iijj outwnet ), it is said to have an identity or 

linear activation function. (Figure 28A). The so-called hard-limiter function (Figure 28B) is 
a threshold function that sets the output at one of two levels (0 or 1), depending on whether 
the total input value (net) is greater or less than some threshold value. The neuron of Figure 
25 is an example of a typical hard limiter function. The threshold function can be used 
where binary output values are used. In these cases an output of 1 signifies a Boolean 'true' 
and 0 a Boolean ‘false’. The threshold logic function (Figure 28C) is another activation 
function, which is in some respect similar to the hard-limiter function but has in addition a 
swap interval, within which out is linearly proportional to net. These threshold functions 
should not be used for direct quantitative analysis, where continuous input and output 
values directly represent the desired values such as concentrations. The third group of 
functions is the nonlinear functions. The nonlinear functions bear greater resemblance to 
the real neurons than do linear or threshold functions, but all functions must be considered 
as rough approximations. For the nonlinear functions the output varies continuously but not 
linearly, as the input changes.  

 
Figure 27. Artificial neuron. The sum of all weighed input signals is computed before the transfer function 
(sigmoid) is evaluated, using the latest value of net.  
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In principle the form of the function of this category is quite arbitrary, with only three 
conditions attached to it: 
- Its outcome must be confined to the interval [0, 1] 
- It must increase monotonically 
- Its must be possible to define a derivative of the function (see later) 
 
Because these activation functions have a bounded range they are also referred to as 
squashing functions. From all squashing functions representing this group, the sigmoid or 
logistic function is probably most used (137). A standard sigmoid neuron j having an input 
netj is described as: 

 
]net[j jexp1

1
out Θ+−+

=   in which outj is the outcome of the squashing function and Θ is the bias 

The shape of this function is an S-curve, scaled between 0 and 1 and it has a threshold value 
Θ. Negative and positive values of the Θ just move the S-curve to the left and the right and 
can therefore be regarded as a threshold value at which the output of the neuron is released 
(Figure 29). The middle most S-curve of Figure 29 has a Θ value of zero. The goal of the 
network training is to change most of the weights (and Θ) so that most of the neurons will 
have net-values spread around the non-linear parts of the S-curve (output-values between 
about 0-0.2 and 0.8-1). The use of the parameter Θ is not limited to the sigmoid activation 
function, but is applied to most of the activation functions (137), and is generally denoted 
as: f(net, Θ).  
 
Another nonlinear function is the symmetric sigmoid squashing function, which has the 
same input (netj) as the sigmoid neuron, but has outputs, which are scaled between –1 and 
1. This function is formulated as follows: 

 1
exp1

2
out ]net[j j

−
+

= Θ+−  

Bos et al (138) has found that this activation function needs much lower learning rates (see 
later) than standard sigmoid neurons. 
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Figure 28. Activation functions. Linear (A), hard-limiter (B), threshold logic (C) and sigmoid (D). 
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Figure 29. Effect of the parameter Θ on the sigmoid activation function.  

 
 
Network topology 
Like biological neurons, a single neuron is not sufficient to perform a specific task. In 
ANNs, the neurons have to be connected to one another and the set of weights have to be 
set properly. The way in which the neurons are connected is called the network topology. 
The topology determines whether it possible for one neuron to influence another and the 
weights indicate the strength of the influence. In a certain sense, the whole set of weights 
represents the knowledge of a specific learning task. Artificial neural networks can roughly 
be subdivided in four groups, namely networks that are capable of association (e.g. 
character recognition), classification, transformation (mapping a multivariate space into a 
smaller dimensionality), and modeling. Modeling, one of the most frequently used 
mathematical applications in science, is the search for a function or model that can predict a 
specified output from any input pattern. The advantage of a neural network model is that it 
does not require any knowledge of the mathematical function. Using a sufficiently large 
number of parameters (weights) ensures enough freedom to adapt the neural network to any 
relation between the input and output data. Modeling always requires the so-called 
supervised learning. Supervised learning is a training process in which a mechanism is used 
to make a neural network associate the target values with the input values (e.g. associate 
concentrations with absorbances). As a consequence, the training must contain the target 
values for supervised learning to take place. After training, these networks are capable of 
predicting the values of output patterns of new samples, which is actually a form of 
interpolation, and sometimes extrapolation. The so-called backpropagation networks are the 
most widely applied supervised networks. 
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Hopfield networks (139) are often used for solving problems related to association, whereas 
Kohonen networks (140) are often applied for classification and mapping problems. In our 
own studies we were only interested in the modeling capabilities of neural networks (see 
Part II of this thesis). Therefore, the properties of the backpropagation networks will be 
explained in some greater detail in the next paragraphs. More information about the other 
kind of network applications can be found in e.g. Zupan et al (137). 
 
Backpropagation networks 
The name of these networks is derived from the learning algorithm, the backward error 
propagation algorithm. Backpropagation networks may be subdivided in two kinds of 
network systems: the classifier systems and the function approximation systems. The first 
system is the oldest one and is used for classification purposes with dichotomized output 
values (only 0 and 1 values). With the function approximation systems the capabilities of 
the backpropagation networks are used for the approximation of continuously valued 
functions. Because our studies are concerned with calibration and prediction of analytes 
analyzed with spectroscopic methods, we have only given attention to the use of the 
function approximation backpropagation network systems. The majority of this group of 
artificial neural network systems consists of three groups, also called layers, of neurons 
(Figure 30). With these neural networks, which are also referred to as multi-layer 
perceptrons (MLPs), the neurons of the input layer are connected to the neurons of the so-
called hidden layer, which in turn are connected to the neurons of the output layer. Note 
that all neurons of the hidden layer have every possible connection with the input and the 
output neurons (Fig. 30). 
 
As a consequence, a large number of neurons (nodes) will result in a large number of 
connections in the ANN. The signals at the input neurons represent the raw-input data that 
are fed into the network. Each connection carries the signal from the input neuron to a node 
deeper into the network, and each connection applies its own weight (w) to the signal (s) so 
that the received signal is the product w•s. In this way the hidden neurons are free to 
construct their own representations of the input data. After applying a non-linear transfer 
function, the same process is repeated between the hidden and the output neurons. 
 
Because the weights of a network are not known in advance, the starting values of the 
weights are normally randomized between –1 and +1 before assignment to the nodes of the 
neural network. The process of carrying the signals through the network from the input- to 
the output-neurons is also called the forward step of the network processing. In supervised 
neural networks, however, the weights are not totally free to construct their own 
representations of the input data, because the patterns of input activities (e.g. absorbances 
of a spectrum) have to be mapped to the patterns of the output activities (e.g. concentrations 
of one sample). The adaptation of the input to the output data, is a process that is generally 
referred to as learning by back-propagation.  
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Figure 30. Three layer ‘multi-layer perceptron’ neural network. The input signals X(0)..X(10) represent the values 
of an input pattern (e.g. the absorbances of a spectrum) and Y(1)..(Y3) the values of an output pattern (e.g. the 
concentrations of different analytes of a sample).  

 
With back-propagation, the ANN is provided with a set of training samples (e.g. spectra) 
with known outcome (e.g. concentrations). The ANN is set to iterate around a loop where 
for each sample of the training set it predicts the outcome in the forward step. 
Subsequently, the ANN compares the predicted outcome (Out) to the real sample outcome 
(t, target) and changes the weights by either strengthening or weakening their values 
proportional to the size of the prediction error. The backpropagation network derives its 
name from the fact that the errors propagate back into the network from the output layer to 
the preceding layers. The global prediction error function E of the network for a pattern p in 
the training set is defined as (141): 

∑ −=
j

2
jj )Outt(

2
1

E  in which jt is the required (target) value of output neuron j 

of pattern p, jOut  the calculated value of the neuron of 

pattern p, and ½ is a factor added for mathematical reasons. 
 
The forward and backward steps occur for each sample in turn, and then are repeated many 
times over the complete training data set in order to reduce the prediction error, or 
ultimately eliminate it completely. What actually happens is that the weights are juggled 
around, so that the output becomes closer and closer to the actual solution. This is called 
convergence. In order that the weights do not fluctuate (oscillate) wildly, the change of the 
weights is controlled by application of the so-called delta-rule. This delta-rule, presented by 
Widrow and Hoff (142) as the ‘least mean square’ learning procedure, extended the original 
perceptron learning rule (143) to continuously valued inputs and outputs. The principle of 
the generalized delta-rule is based on gradient descent (137) and is only applicable to MLPs 
with differentiable activation functions. This training algorithm that was popularized by 
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Rumelhart et al. (141) and remains the most widely used supervised training method for 
neural nets. 
In a 3 layer MLP, the first step in the application of the delta-rule is the calculation of the 
error term δ for the neurons of the output layer: 

 )Net(f)Outt( jjjj ′−=δ  jOut ( )Net(f j= ) is the outcome of the j-th neuron of 

the output layer, and f ′  is the derivative of the transfer 
function of jNet , which is )Out1(Out jj −  in case of a 

sigmoid function. 

For each neuron i from the preceding (hidden) layer the term iδ is calculated using the jδ s 

from the succeeding output layer and the weights connecting the neuron i in the hidden 
layer to the neurons j in the output layer: 

 ∑
=

′=
r

1j
jijii δw)  (Netfδ  in which ∑

=

r

1j

is the summation over the r connected 

output neurons 
 
 
Using these error terms (δ), the re-adjustments of the weights can be calculated. The 

correction of the weights )ww(w )old(
ij

)new(
ij

n
ij −=∆  of the neurons, at any layer n during the 

learning process is defined by the delta-rule as: 

1n
i

n
j

n
ij Outw −ηδ=∆  in which 1n

iOut −  is the outcome of the i-th neuron of the previous 

layer (n-1) and hence one of the inputs of the j-th neuron in the 

current layer n ( n
jx ), n

jδ  is the error term of the j-th neuron of the 

current layer (n) and η the so-called learning rate (see later) 

From this formula it can be seen that the change of the weight n
ijw∆  on the layer n is 

proportional to the error n
jδ  and to the signal 1n

iOut −  coming from the neuron i of the 

preceding layer.  
 
 
The described backpropagation algorithm can be used for both batch training (in which the 
weights are updated after processing the entire training set) and incremental training (in 
which the weights are updated after processing each training sample) (144;145). For batch 
training, the weight adjustments ( w∆ ) are temporarily saved by summing them in an 
adaptation-array. After each of the training patterns has been processed in this way, the 
summed adaptations of the weights are added to the weights. After this, the adaptation-
array is zeroed and the process is repeated. Each processing of the entire training set in this 
fashion is referred to as an epoch or iteration. As a rule hundreds or even thousands of 
epochs are necessary to achieve convergence to a global minimum. The summation of the 
weight adjustments in an adaptation-array and re-adjustment of the weights at the end of an 
epoch avoids that the network becomes skewed to the last presented training pattern(s) to 
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the network. For incremental training, the standard backpropagation algorithm does not 
converge to a stationary point of the error surface (see later). To obtain convergence, the 
learning rate must be slowly reduced. This methodology is called ‘stochastic 
approximation’ or ‘annealing’ (146).  
 
This delta-rule is normally associated with two extra variables η, the learning rate and µ the 

momentum. The learning rate η (see the equation about the weight adaptations n
ijw∆ ) is 

normally an empirical fixed step size that determines the size of the steps taken in the 
weight adaptations. The learning rate must have a value between 0 and 1 and needs to be 

chosen in such a way that it ensures the most rapid learning without the n
ijw∆  values 

oscillating wildly. In order to achieve faster convergence, and to avoid getting trapped in 
local minima (see Figure 31), the general equation for correction of the weights is generally 
augmented by an additional term: 

)previous(n
ij

1n
i

n
j

n
ij wOutw ∆µ+ηδ=∆ −  where µ is called the momentum and )previous(n

ijw  is a 

change of the weight n
ijw  from the previous learning 

cycle. The first term of the equation refers to the 
current cycle. 

 
Unfortunately, the addition of the momentum in backpropagation networks requires 
doubling of the computer space, because all weights have to be stored for both the current 
and the previous cycle (epoch), as can be seen from the last equation. This generalized 
delta-rule including the momentum is called the ‘heavy ball method’ in the numerical 
analysis literature (147). Figure 31 shows the effect of the standard backpropagation 
training on the global network error E. The error surface on the X-axis is defined by the set 
of training samples and the applied network topology. The starting point of the training is 
illustrated in this figure by the black ball (circle), which is rolling down from a hill. This 
hill, however, does not only have a downhill slope (gradient descent), but also has a bumpy 
surface with several peaks and valleys before the lowest point (valley) is reached. In 
unfavorable circumstances, the ball may settle into a local minimum (valley) instead of 
finding the global minimum. In network terminology, such an awkward situation may be 
prevented by choosing the right learning rate and momentum. In such a case, the ‘heavy 
ball’ is pushed out of the local minimum and continues its way along the error surface 
towards the optimal solution.  
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Figure 31. Illustration of the change of the global error rate of the network during training. 
 
Practical aspects of backpropagation networks 
Data collection 
All training-, validation- and test-data must be representative for the problem that has to be 
modeled. It is important to have more training samples than the number of neurons of the 
input layer. The number of training samples required depends on the amount of noise in the 
targets and the complexity of the function that has to be learned. As a starting point, it is a 
good principle to have at least 10 times as many training samples as input neurons. It 
should be noted that the data collection and the next step − data pre-treatment − are critical 
aspects in the development of a network system and can account for most part of the time 
of the whole development cycle. 
 
Data pretreatment 
In order to permit the generation of an accurate network model it is sometimes necessary to 
perform pretreatment of the input data. For more information is referred to the same 
passage in the ‘general features of calibration’ section of the previous chapter.  
Rescaling the input and output values 
Rescaling a vector means that a constant is added or subtracted from the vector values and 
subsequently multiplied or divided by (another) constant. This scaling is often applied to 
obtain values between 0 and 1, or between –1 and +1. 
When backpropagation networks with fixed learning rates and sigmoid neurons in the 
hidden layer are used for the approximation of continuous valued functions, scaling of the 
input values is often necessary. Without scaling, large input values will result in extreme 
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(positive or negative) values of the net input function ( ∑
=

=
n

1i
iij

hidden
j outwnet ), which in turn 

results in output values of the sigmoid squashing function close to either 0 or 1. These 
output values ( jOut ) result in derivative values close to 0 [ )Out1(Out jj − ] and hence small 

adaptations and learning will occur. A larger learning rate may be chosen to compensate, 
but this also affects the weight adaptations of the succeeding layers as well and may lead to 
adverse behaviour. Another aspect is that the order of magnitude of an input value with 
respect to other inputs values should be the same, otherwise the learning may be dominated 
by the input with the larger magnitude. For that reason, each of the inputs of the network is 
often scaled separately. On the other hand, scaling the input values may have adverse 
consequences as it can amplify noise (e.g. in case of NIR spectra).  
Linear output functions are often suggested when the mapping of the input and output 
patterns are highly linear (e.g. absorbances mapped to concentrations). When the output of 
a sigmoid neuron approaches the limits of 0 and 1, the derivative and thus the delta term 
approach to 0. In contrast to sigmoid neurons there is no damping of the magnitude of the 
delta term )Outt()Net(f)Outt( jjjjjj −=′−=δ  of the linear neurons, and large errors, or 

even floating point overflow may occur. More information about this scaling subject may 
be found elsewhere (144). 
 
Training and prediction 
The development cycle of the training and prediction of a backpropagation network is 
essentially the same as the process described in the previous chapter about the PLS 
regression (see Figure 23). One of the known problems with backpropagation networks is 
their tendency to over-fit training sets with noisy data. Therefore, it is important to validate 
the performance of the network training with a separate validation set or full cross-
validation and subsequently monitor the prediction error of the training- and validation-data 
as a function of the number of epochs (training cycles), analogous to the plot of Figure 24 
in the previous chapter. Generally, the normalized standard error (NSE) is used to express 
the performance of the prediction. The NSE is an extension of the global prediction error 
function E and is expressed as: 

∑∑ −=
p j

2
j,pj,p )Outt(

PJ

1
NSE  in which j,pt is the required (target) value of 

neuron j of pattern p, j,pOut  the calculated 

value of the neuron of pattern p, and P and J 
are the total number of patterns and neurons of 
the output layer, respectively. 

 
In practice, the square root is often taken from the NSE. This characteristic is also referred 
to as the root mean squared error (RMSE), which is called RMSEC in case of the error of 
the training samples (in which C stands for calibration) and RMSEV in case of the 
validation samples. Except for validation, the predictive performance of the network should 
be tested with an independent test set. 
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Initial weights 
As mentioned earlier, the starting weight values are normally randomized between –1 and 
+1. The function of the backpropagation learning algorithm is to move the network system 
towards a lower error state. By changing the initial conditions of a neural network (other 
randomized weights), the starting point on the error surface can be modified. The gray 
circle in Figure 31 illustrates a different starting point on the error surface. In contrast to the 
former starting point (black circle) the optimal solution is likely to be found in a shorter 
time with fewer epochs. It is recommended to use at least five different starting conditions 
(sets of random initial weights) for each neural network model. Typical validation results 
(RMSEV) should be within a few percentage points of each other. 
 
Early stopping rule 
Overfitting is one of the most serious problems in neural network training. Generally, many 
thousands of cycles are necessary to achieve convergence, if convergence is achieved at all. 
Because the number of connections and thus weights is large in even medium-sized 
networks, the iteration can be very lengthy or even be unattainable. A method, which is 
called early stopping or stopped training, is the most common solution to solve this 
iteration problem. The method is popular because it is fast. Briefly, the method proceeds as 
follows: 
- Judge the error values of the validation set for this method 
- Use relatively small initial weights (e.g. between –0.3 and + 0.3) 
- Use a relatively small learning rate (e.g. < 0.2) 
- Compute the validation error (RMSEV) periodically during training 
- Stop training when the RMSEV value starts to go up 
If the validation error goes up and down several times during training the safest approach is 
to train towards convergence of the RMSEV and then go back to see which iteration 
(epoch) had the lowest validation error. More information about the early stopping rule can 
be found in a manuscript of e.g. Sarle (148).  
 
Number of hidden units 
The optimal number of hidden neurons depends in a complex way on several issues such 
as:  
- The amount of noise in the targets 
- The complexity of the function to learn 
- The hidden unit transfer function 
- The number of training samples 
- The number of input and output neurons 
If too few hidden units are selected, the training error (RMSEC) and validation error 
(RMSEV) will be too high due to underfitting (see Fig. 24). If too much neurons are 
selected, the training error will be low, but the validation error will be high due to 
overfitting (Fig. 24). However there are several rules of thumb described for the selection 
of the optimal number of hidden neurons, none of these is based on heuristic rules. In most 
applications of backpropagation networks, the topology is determined empirically by 
training several times with different numbers of neurons in the hidden layer. As the 
computational effort is large with this approach, an efficient and automated procedure is 
very desirable. 



Chemometrics 

 

 
69 

 

Learning rate and momentum 
In normal backpropagation networks, too low learning rates make the network train very 
slowly. Too high learning rates make the weights diverge because the change of the weights 

w∆  (step sizes) becomes too large, so there is no learning at all. The learning rate may be 
constant during the training of each network model, or be changed in the course of the 
training process. In our studies we only applied a fixed learning rate during training of each 
network model. The determination of the optimum (fixed) learning rate is often found by 
trial and error. As a starting point, the learning rate may be set proportional to the number 
of connections with the neurons of the previous layer. In attempt to speed up the 
backpropagation, methods are developed to change the learning rate in the course of the 
training. Many of these methods produce erratic behaviour because they change the weight 
as a function of the magnitude of the gradient (see Fig. 31). The reason for their erratic 
behaviour is that in some cases large step sizes are needed in areas with small gradients 
(e.g. to get out of a local minimum) and in other cases small step sizes are needed in areas 
with small gradients (e.g. to stay into a global minimum). Other methods have been 
developed, such as the Quickprop (149) and RPROP (150) methods, that do not have this 
excessive dependence on the magnitude of the gradient. 
The momentum is usually set to zero. In calibration problems, the application of the 
learning rate has proved to be sufficiently fast, without ever leading to oscillation (138). 
 
Further reading 
An excellent starting point for further reading is a book of Zupan et al. (151) which 
provides the reader with an overview about artificial neural networks including some 
chemical applications. A manuscript of Smits et al. (152) is good general description of 
MLP feed-forward networks, whereas Bos (144) studied some theoretical aspects of 
backpropagation networks and applied them to a number of quantitative analysis problems 
(e.g. spectroscopy).  
 
 
3.3.   Spectral library search 
 
Introduction 
Visual interpretation of IR spectra for the determination of the composition of a sample 
may be difficult and time-consuming. The use of FT-IR spectroscopy coupled with a 
method for searching spectra within a database provides an efficient methodology to the 
identification problem. There are several commercial spectral databases (e.g. Sadler), each 
containing large numbers of FT-IR spectra with various components. The components not 
only occur in their pure state, but also as part of a mixture. For accurate identification of the 
components, the reference spectra of the library have to be sampled under the same 
conditions (sample handling techniques, equipment used, etc.) as the sample spectrum. The 
quality of the library not only depends on the conditions of the reference spectra in the 
library, but also upon their number. For accurate identification of the component(s), the 
search method needs a library with a large number of reference spectra. In practice, 
however, it is often difficult to obtain a commercially available general-purpose library that 
contains reference spectra of all possible components and mixtures of interest. Therefore, it 
is often necessary to build a large in-house reference database specially adapted to more 
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specific analytical problems. The benefit of these in-house databases is that they may be 
used for the prediction of the composition of a sample, provided that the database contains 
a sufficiently large number of reference spectra with known compositions of a limited 
number of components that cover the whole concentration range of the sample spectra.  
 
Computerized library search 
A search program (e.g. SearchMaster from Sadler) calculates which library spectrum is the 
most similar to the sample spectrum. Except for library searching, most programs are also 
provided with features for library creation, development and maintenance. Three issues are 
especially important for obtaining accurate results from library search: the library 
resolution, the search area and the kind of search algorithm. 
 
Library resolution 
For computerized library search, the number of datapoints to be compared between the 
sample spectrum and those in the library must match. The resolution of the library 
determines the size of the library and the processing time. In the mid-IR region, resolutions 
better than 4 cm-1 are rarely if ever necessary. At higher resolutions, the processing time 
may become too long and searching on minor irrelevant bands caused by noise may occur. 
If the resolution of the sample spectrum does not match the resolution of the library, the 
quality of the algorithm for reducing the resolution of the sample spectrum is very 
important. Just dropping datapoints will definitely distort the spectral bands.  
 
Search area 
All library search methods depend on peak matching or full spectrum matching. In any 
case, it is important to choose the correct wavenumber range(s) for searching. All bands of 
interest that originate from the components of the sample spectra must be present in the 
search area. In mid-IR spectroscopy, library search is often performed on the so-called 
fingerprint area of the spectrum (2000 to 400 cm-1), because this area often contains all 
characteristic and unique spectral properties of the components. 
 
Search algorithm 
A number of different search algorithms exist. Each of these algorithms compares the 
absorbances of the selected datapoints of the sample spectrum with the absorbances of the 
matching datapoints of each of the reference spectra. The result of the algorithm is always a 
single characteristic, expressing the degree of resemblance between the sample and 
reference spectrum. Depending on the kind of search algorithm, the characteristics may be 
classified into two groups, namely those expressing a measure of dissimilarity and those 
expressing a measure of similarity. Small values ideally zero or close to zero, express good 
matching in case of the dissimilarity measures. The correlation coefficient is the only 
member of the second group of similarity measures and amounts to 1.000 in case of 
perfectly matching spectra and to 0.000 if no similarly is obtained at all. After the search 
algorithm is applied to each of the reference spectra, the calculated dissimilarity or 
similarity values are ordered in magnitude. The sort direction (ascending or descending) 
depends on the type of algorithm, but the most corresponding reference spectrum is always 
placed on top the ordered list. This list, which is also referred to as the hit list, contains the 
resulting value of the algorithm together with a description of the reference spectrum. 
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Depending on the search program, the entries of the hit list also may be completed with a 
drawing of the chemical structure, the CAS registry information and the physical-chemical 
properties of the component. The quality of the search method may depend on the chosen 
search algorithm. The formula of the six most commonly used criteria will be presented 
here, followed with a short description of each of these methods.  
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In these formulas, si is the absorbance of the i-th datapoint of a sample spectrum, ri the 
absorbance of the i-th datapoint of a reference spectrum and n the number of selected 
datapoints. 
 
Absolute difference 
The absolute difference algorithm emphasizes band heights and has the shortest processing 
time. Results obtained using the absolute difference algorithm may be especially uncertain 
when the unknown spectrum has a sloping or offset baseline. 
 
Squared difference 
The squared difference algorithm is a least-squares metric, which tends to weigh bands in 
the sample spectra more heavily than in the case of the absolute difference algorithm. This 
means that the squared difference tends to minimize the effects of a noisy baseline. The 
squared difference algorithm is also a fast search algorithm. Similar to the absolute 
difference algorithm, the results may be inconclusive when the sample spectrum has a 
sloping or offset baseline. 
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Absolute derivative 
This algorithm emphasizes band positions more than band heights and hence tends to 
minimize the effect on the match value when the sample spectrum has a sloping baseline or 
broad non-specific features. If the component of the sample spectrum is not in the library, 
the first matches may not be alike. The processing time for the absolute derivative 
algorithm is longer than the processing time for the difference algorithms. 
 
Squared derivative 
The squared derivative algorithm emphasizes band positions and weights them more 
heavily than the absolute derivative algorithm. The squared derivative algorithm also 
reduces the effect of a sloping or offset baseline in the sample spectrum. If the component 
of the sample spectrum is not in the library the first matches may not be alike. 
 
Euclidean distance 
This algorithm calculates the match values as the sum of vector differences (120). The 
Euclidean distance algorithm is especially suitable for prediction of the composition of 
mixtures. If the sample spectrum has a sloping or offset baseline, the results may be 
inconclusive. The processing time for the Euclidean distance algorithm is larger than that of 
the difference and derivative algorithms. Because the Euclidean distance is not as sensitive 
to differences between spectra as are the other algorithms, it may produce inconclusive 
results for sample spectra that are not mixtures. 
 
Correlation coefficient 
The standard correlation coefficient algorithm (121), can automatically account for factors 
such as baseline drift, differences in scaling and so on. No data preprocessing, such as 
baseline correction, is needed. Furthermore, because the calculated match value is a 
correlation coefficient, the search results are not a measure of relative best fit, but rather 
absolute values with a statistical significance (similarity). It is unlikely that dissimilar 
compounds in the library will display correlation coefficients higher than 0.95. The 
processing time for the correlation coefficient is the longest of all the available algorithms. 
 
Conclusion 
The difficulty with library search is that the method needs a library with a large number of 
reference spectra to obtain reliable results. In practice, it is impossible to build a library 
with all possible compositions of components. So, interpolation and combination of library 
search results is often necessary for the prediction of the composition of sample mixtures.  
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4. Future trends 
 
This chapter briefly describes a few promising techniques related to some of the subjects, 
which are described in this thesis. 
 
13C triglyceride breath test as alternative for fecal fat determination 
Both the traditional (e.g. Van de Kamer) methods as well as some of the new IR methods 
are generally accepted analytical methods for the routine determination of fecal fat for the 
diagnosis of steatorrhea. Nevertheless, the outcome of neither of these methods is a direct 
function of the metabolic state of dietary lipid intake. This is because the amount of fecal 
fat is based on a combination of dietary and metabolic lipids as described in chapter 1.1. 
Additionally, the treatment of the feces samples in each of these methods remains rather 
cumbersome. To avoid the above-mentioned shortcomings, some studies described a 13C 
medium-chain triglyceride breath test (153;154) as alternative for the analysis of fecal fat. 
The principle of the 13C labeled triglyceride tests is based on lipolysis-dependent 13CO2 
excretion via the breath after the ingestion of a certain amount of 13C-enriched triglycerides. 
The 13C enrichment may be measured by means of isotope ratio mass spectrometry, also 
referred to as IRMS (154), or gas isotope ratio measurement with FT-IR spectroscopy 
(155). A general problem of breath tests using labeled lipids for the diagnosis of steatorrhea 
is the poor sensitivity and specificity, probably caused by the various steps involved in the 
metabolism of the labeled compound. Differences in e.g. the gastric emptying rate, 
intraluminal lipolysis, mucosal absorption, lipid metabolism, endogenous CO2 production 
and pulmonary excretion may obscure the relation between the tracer compound expired 
and the metabolic process studied. Up to now, none of the 13C triglyceride breath test 
studies has been clinically validated, so further investigations have to be done. Because of 
the large number of compartments (such as stomach, intestinal lumen, blood and lung) 
involved in the metabolism of the labeled compound, suggestions have been made to 
measure the 13C tracer compound in plasma (156) instead of breath.  

Raman spectroscopy as alternative for FT-IR 
Almost all biological samples contain water. Without sample pretreatment, water may be a 
serious problem in FT-IR spectroscopy, especially in the mid-IR region (see chapter 2.2). 
Water attenuation is not a problem for Raman spectroscopy. With Raman spectroscopy, no 
elaborate specimen preparation is needed and the samples can be remotely detected by 
back-reflection even through glass windows. Raman spectra are also insensitive to 
temperature. This is in marked contrast to FT-IR, in which often very short pathlength is 
required and contamination of the sample probes can cause serious practical limitations. In 
spite of these advantages and even though it is a rather old technique (C.V. Raman received 
the Nobel prize for his work in 1930), Raman spectroscopy has not received much attention 
from analytical and clinical chemists until the invention of the laser.  
 
Raman spectroscopy is a form of optical spectroscopy in which the energy is exchanged 
between the light and the matter. When light impinges upon a substance it can be scattered 
or absorbed (157). Most of the scattered light will have the same frequency as that of the 
incidence light, and is also referred to as elastically scattered light (Rayleigh). Raleigh 
scattering occurs by the interaction of the incident light and an atom. However, a small 
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fraction of the incident light can set the molecules in the material into vibration when it 
impinges upon a molecular bond (Figure 32).  
 

 
Figure 32. Raman scattering (thin arrows around the molecular bond) and Raleigh scattering (dark arrows around 
the N-atoms) of a N2 molecule.  

 
The interaction between the incident light and the molecular bond causes a wavelength 
shift, which is known as the Raman effect (158). The resulting Raman spectrum is a plot of 
the scattered light intensity (y-axis) versus its change in frequency (x-axis), relative to that 
of the incident light. The Raman frequency shifts are conventionally measured in 
wavenumbers (cm–1). The Raman spectra differ from IR spectra, in that the Raman bands 
are sharp and locatable to 1 cm–1 for both organic and inorganic components. The Raman 
and IR bands do not necessarily coincide because different rules govern possible spectral 
transitions. Fewer bands appear in Raman spectra since fewer combinations of fundamental 
frequencies occur, resulting in sharper and less crowded spectra (159). Raman spectra may 
be used for the identification of a sample component as well as for its quantification. 
Because Raman spectroscopy is based on weak inelastic scattering (typically 108 weaker 
than Rayleigh scattering), modern Raman spectrometers are equipped with irradiation lasers 
and sensitive detectors to obtain spectra in a reasonable time. In Raman spectroscopy, 
visible, ultraviolet and infrared light can be used for Raman excitation. Unfortunately, 
many samples (particularly organics) fluorescence quite strongly when excited with visible 
laser light, and as a consequence hide the weak Raman spectra. Therefore, the newest 
generation of compact FT-Raman/IR instruments eliminate fluorescence as much as 
possible by using an infrared laser coupled with the Fourier transform technique by which 
the whole spectral range is sampled and the data are processed in real time. The current list 
of Raman probes include sample (fiber) optics for noninvasive point-and-shoot monitoring 
with working distances from 0.01 to 17 inch, immersion probes for use in process streams, 



Future trends 

 

 
75 

 

standard (glass) cuvettes and microscopes (160). Because conventional glass does not 
interfere in Raman spectroscopy at all, standard microscope optics may be used. 
 
In clinical chemistry, Raman spectroscopy may provide quantitative chemical information 
of analytes in either the cellular or extracellular compartments of the body. Biochemical 
analysis, using Raman, may be performed in vitro and in vivo. Urinary stones and 
gallstones have extensively been studied in vitro using Raman spectroscopy. Most of these 
studies used visible excitation (161;162), whereas others used near-IR laser light (159). 
Furthermore, Raman spectroscopy has been applied to numerous other bio-medical studies, 
such as in the diagnosis of arteriosclerosis (163) by in vitro invascular tissue investigation 
of human coronary artery samples obtained during autopsy, for the detection of breast 
cancer (164), the classification of drug-resistant bacteria (165), and the analysis of several 
blood analytes, such as glucose, cholesterol, total protein, albumin, triglyceride and urea 
(166). 
One of the most challenging areas of spectroscopy is in non invasive glucose monitoring in 
diabetics, which is one of the fastest growing segments of diagnostic testing. Raman 
spectroscopy has also been applied to the measurement of the blood glucose concentrations 
(167). Currently, glucose specimen sampling is often performed by finger pricking and 
collecting a drop of blood. Therefore, Raman spectroscopy is under investigation as an 
optical technique for non-invasive glucose measurement (168). However, it now appears 
that individual patient calibration models are needed to overcome the physical effects in 
noninvasive patient IR and Raman monitoring (101). Further development of the probes 
aimed at continuous monitoring is also needed. Therefore, the present spectroscopic 
technology and chemometrics still require further improvements. Miniaturizing monitoring 
techniques in diabetes therapy including insulin pumps provide further scientific impetus 
for research into noninvasive glucose assays by Raman and NIR spectroscopy. 
 
Raman spectroscopy is a very promising technique for biomedical applications. 
Nevertheless, some analytical problems need special attention, especially in case of in vivo 
measurements, such as laser wavelength and intensity stability, spectral acquisition times, 
fluorescence blocking and laser heating of the sample.  
 
Genetic algorithms as a method for wavelength selection 
In analytical and clinical chemistry, the purpose of developing a calibration model is 
mainly prediction of the concentration of the components of new samples. It is well known 
that high spectral overlap may cause large prediction errors (see also chapter 3.2.1). When 
multiple linear regression (MLR) is used, selection of wavelengths is the most popular 
method to attempt to reduce the error in the prediction. When a large number of input 
variables is used (e.g. 700 points of an absorbance spectrum) there will be a serious 
problem using MLR without selection (very large prediction error). The simplest method of 
selection would be to examine all possible combinations of the variables exhaustively. 
Using this selection method with 700 variables one has to choose from 244650 possible 
two-term (X-variable) equations. In case of three-term equations there would even be 
56921900 equations to examine. 
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In general the number of possible equations can be calculated by: 
 Number of possible subsets = p!/(m!(p!-m!)) in which p is the number of 

initial variables; m the number 
of best variables; and ! is the 
faculty of p or m. 

Of course it is difficult to predict the number of best variables in the subsets. For this 
reason, and given the large number of possible subsets using even only two- and three-term 
equations in case of large number of initial X-variables (e.g. 700), this selection method is 
computationally expensive and in most situations virtually impossible. The disqualification 
of this selection method has led to the development of other methods, such as PCR and PLS 
(see chapter 3.2.1.). These techniques became popular because they by-pass the selection 
problem by using the whole spectrum or large parts of the spectrum. However, because 
relevant information is often restricted to a few areas of the spectrum, whole spectrum 
selection will potentially cause many variables to be completely irrelevant to the objectives 
of the calibration model. The selection of a large number of variables also necessitates the 
use of a large number of calibration samples in relation to the number of variables to obtain 
reliable estimates of the regression parameters. Genetic algorithms (GAs) are techniques 
that circumvent the use large parts of a spectrum for calibration.  
 
The basic principles of GAs were first described by Holland (169). Since the mid 1980s, 
GAs have been applied to numerous scientific fields, such as to solve search (e.g. 
wavenumber selection) and the optimization of chemical systems (e.g. the optimization of 
temperature and solvent gradients in chromatographic processes). In the problem of 
wavelength selection in multicomponent analysis, GA have shown to be useful in the 
selection of the most important variables for the calibration model (170-172). From this 
literature there is an indication that MLR yields models with the same number of regression 
variables after GA variable selection as PCR or PLS regression, and usually with the same 
or somewhat better predictive ability. 
 
Genetic algorithms are general-purpose search algorithms based upon the principles of 
evolution observed in nature. Analogous to genetic evolution, GAs combine cross-over, 
mutation and selection operators with the goal of finding the best solution to a problem 
(survival of the fittest). Genetic algorithms search for this optimal solution until a specific 
termination criterion is met. In case of GAs, the chromosomes are represented by a number 
of strings. The GAs operate on the populations of the strings, with the strings coded to 
represent some underlying parameter set (see later). Ideally, these strings are coded with 
binary values (0 and 1), though other possibilities exist. Selection, cross-over, and mutation 
operators are applied to the successive string populations to create new string populations. 
These operators are very simple, involving nothing more than random number generation, 
string copying, and partial string exchanging.  
 
The standard genetic algorithm for variable selection 
The first stage of GA is initialization. During this stage, a coding plan and fitness or target 
function have to be defined, followed by a preliminary selection of a subset of strings 
(chromosomes) from the population. After the initialization stage, the evolution phase of 
GA has to be performed. Every evolutionary step in GAs is known as a generation. The 
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generations in GAs consist of a combination of a cross-over, a mutation and a selection 
step. These generation steps are repeated over and over until a certain criterion has been 
reached. The successive steps of GA are briefly described in the next sections.  
 
Initialization of the population 
For a spectral wavenumber selection problem, the general way to code the solution is to 
generate a set of binary coded strings (0100111010…). Such a string is also referred to as a 
subset. The length of each string is the number of wavelengths of e.g. a spectrum. In this 
way each possible subset of wavelength (points) can be represented as a string of 0s and 1s, 
with a 1 in position i if the i-th wavelength is present in the subset and 0 if it is not. The 
number of 1s in any particular string is the number of wavelengths in the subset. An initial 
population of strings is always generated at random. The number of subsets (strings) is 
generally equal to the number of calibration samples available. The whole set of coded 
strings is also referred to as the population, and the strings in this population are also called 
the parents. 
 
Evaluation of the population 
To select good subsets of wavelengths, a fitness function has to be defined for each GA 
selection problem. In spectroscopy, the outcome of such a function is a single numeric 
fitness value that expresses the predictive ability of the calibration model. In principle, any 
sensible fitness measurement can be used. Often, the RMSE values of the validation or test 
sets are used. The fitness value is calculated for each subset of the population. After this 
process, the fitness values and accompanying subsets are sorted in order of their fitness 
rating.  
 
Selection 
During this phase, the subsets with good fitness ratings are selected from the population. 
These subsets have a higher chance of producing offspring (new subsets) with even better 
fitness ratings. The number of selected subsets (strings) is generally only a fraction of the 
number of calibration objects available (e.g. one third). These subsets are allowed to 
produce offspring in the next step of the GA process. The rest of the substrings of the 
population with worse fitness values will ‘die’ off. 
 
Cross-over 
Cross-over is a genetic operator that combines (mates) two parent strings to produce a new 
subset (offspring). The idea behind the cross-over operation is that the new offspring may 
be have better characteristics (selected variables) than both of the parents if it takes the best 
characteristics from each of the parents. The cross-over procedure has two steps, namely 
the strings are mated randomly and the mated strings couples cross-over, using a randomly 
selected crossing site (Figure 33). 
 
Parent 1: 11001|010 offspring 1: 11001111 

 X 
Parent 2: 00100|111 offstring 2: 00100010 

Figure 33. Example of two parent strings creating two offsprings with a single random cross-over point. The 
“|”symbol denotes the randomly chosen cross-over point. 
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Cross-over is not necessarily applied to all mates. A choice for crossing is made depending 
on a probability value selected by the user (typically between 0.6 and 1.0). If cross-over is 
not applied, the offsprings are simply duplicates of the parents. 
 
Mutation 
Mutation is a genetic operator that alters one or more string values in a subset from its 
initial state (0 to 1 or 1 to 0). Mutation is an important part of the genetic search procedure 
as it helps to prevent the population from stagnating in any local optimum. The mutation 
occurs during the generations according to a user-definable mutation probability. This 
probability is generally fairly low (0.01 or 1%). If this value is set to high, the search will 
turn into a primitive random search. 
 
The described genetic algorithm is a stochastic iterative process that is not guaranteed to 
converge. The termination condition may be specified at some fixed, maximal number of 
generations or as the attainment of an acceptable fitness value. Whatever approach is 
chosen, when the process is stopped the final population should at least contain some 
subsets that perform well. 
 
In practice the GA process is usually more complex. For example, other coding strategies 
may be followed, as well as the use of different mutation and cross-over operators. For this 
and other information about GAs, the interested reader is referred to other sources with 
more in depth information about the subject (151;170-176).  
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ABSTRACT 
Current techniques used in clinical laboratories for faecal fat determination, such as the Van 
de Kamer method, are not very accurate and precise. This became apparent when results 
obtained by different laboratories were compared, and could explain the disappointing 
performance of near-infrared and mid-infrared spectroscopy since the accuracy of these 
techniques depends upon the accuracy of the calibration used (i.e. inaccurate wet chemical 
analysis). In order to improve standardization we developed and tested a new quantitative 
method in three laboratories based on Fourier Transform infrared (FT-IR) spectroscopy. 
Fatty acids were extracted from faecal samples with acidified petroleum ether–ethanol and 
the extracts were dried and dissolved in chloroform. An infrared spectrum of the extracts 
was recorded in the range 4000–650 cm–1, using an IR transmission cell. Standard mixtures 
of stearic and palmitic acid (65:35) were used for calibration. Quantification was based on 
the absorbance band of the CH2 group (2855 cm–1) of free fatty acids and fatty acid glycerol 
esters. The calibration curve showed excellent linearity. The correlation coefficient between 
the titrimetric Van de Kamer and FT-IR methods was 0.96 (y=1.12x–0.02, standard error of 
prediction = 0.89 g% fat). No significant difference was found when the FT-IR results of 28 
faecal samples from patients were compared between two different university hospital 
laboratories. The new FT-IR method, using primary standards, is simple and rapid, and 
provides satisfactory intra- and interlaboratory precision for diagnosis and monitoring of 
steatorrhoea.  
 
 
INTRODUCTION 
Steatorrhoea is defined as an increase of fat in stool. Intestinal malabsorption, which is the 
most frequently occurring cause of steatorrhoea, is a problem with absorptive functions of 
the bowel (1;2). Furthermore gastric, pancreatic and biliary diseases can cause maldigestion, 
which in turn can also lead to steatorrhoea. The gold standard laboratory method to 
diagnose steatorrhoea is faecal fat analysis: stools are collected for 72 h and the faecal fat is 
measured by traditional techniques such as titrimetric (3), gravimetric (4) or acid steatocrit 
(5) methods. These techniques are less suitable for serial routine analyses as they are 
inaccurate, imprecise, time-consuming and require unpleasant and prolonged handling of 
stools (6). In recent years new techniques have been introduced to determine faecal fat 
content by means of infrared (IR) spectroscopy. Several authors have reported on the use of 
near-infrared (12.500–4000 cm–1) reflectance (NIRR) analysis as a method suitable for the 
investigation of steathorrhoea (7-9). Calibration is performed by NIRR using a considerable 
number of reference samples in which the faecal fat content has been previously derived 
from wet chemical analysis (secondary reference samples), using, e.g. the Van de Kamer 
method (3). Multivariate analysis methods such as partial least squares (PLS) or multiple 
linear regression (MLR), are then used to relate the NIRR absorbance data to the known fat 
content of the reference samples, thus enabling the fat content of unknown samples to be 
calculated from their NIRR data. Recently, Franck et al. (10) introduced a similar method 
for faecal fat analysis, using mid-infrared reflectance (MIRR) spectroscopy (4000–400 cm–

1). Their method is based on the use of a horizontal attenuated total reflectance accessory on 
which the stool sample is spread. Samples that are too liquid, too solid, or that contain 
visible food or other fragments have to be excluded. 
The disappointing performance of these NIRR or MIRR results can be attributed to 
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inaccurate wet chemical analysis of the calibration set. Nevertheless, IR spectroscopy is 
potentially useful for faecal fat determination and can be improved by the introduction of 
standardization and calibration using primary standards and lipid extracts of faecal samples, 
instead of unprocessed stool samples. Such lipid extracts, using chloroform as solvent, were 
put in a liquid transmission cell, from which the IR spectrum is recorded. We used primary 
standards consisting of a mixture of the most prominent fatty acids in human stools (stearic 
and palmitic acids, 65:35) and compared the FT-IR results obtained by the Van de Kamer 
method. We studied the consequence of primary standardization for faecal fat analysis and 
the resultant interchangeability of laboratory results generated by the new method.  
 
MATERIALS AND METHOD 
Stool collection 
Seventy-two-hour stool samples, collected from 97 consecutive patients who were suspected 
of having malabsorption or maldigestion, were homogenised in a blender. Samples that 
could not be analysed immediately after collection were stored at –20°C. 
 
Sample preparation and determination of faecal fat with FT-IR 
Stool samples were treated according to the extraction procedure derived from the 
gravimetric method, as described by Wybenga et al. (4), with minor modifications. A faecal 
sample (0.5 g) was suspended in 1 mL water, 100 µL HCl (37%) and 3 mL of ethanol 
(96%). Then 5.0 mL petroleum ether was added and the mixture was vigorously shaken for 
10 min followed by centrifugation for 5 min at 3000 g. A 4-mL portion of the organic layer 
was transferred to a new tube, and evaporated for at least 30 min at 45 °C under a stream of 
nitrogen. The dried lipid extracts were dissolved in 1.0 mL chloroform (gradient grade) and 
transferred to a transmission flow cell with sodium chloride crystals (path length 0.1–0.025 
mm). The spectra were measured in the mid-infrared region from 4000–650 cm–1. Sixteen 
scans were co-added at an optical resolution of 4 cm–1 (strong apodization), using a Perkin-
Elmer Spectrum 2000 spectrometer (Perkin Elmer, Norfolk, CT, USA), or a Bio-Rad FTS-7 
spectrometer (Bio-Rad, Cambridge, MA, USA).  
Both spectrometers were equipped with a deuterium triglycine sulphate detector. 
Chloroform was used for background subtraction.  
 
Faecal fat determination using the conventional method 
The faecal fat analyses were done in three university hospital laboratories, according to the 
conventional Van de Kamer (3) method. This method is the current 'state of the art' in Dutch 
hospitals and is based upon a single acid extraction of saponified fatty acids from the stool 
followed by titration of the fatty acid COOH group with sodium hydroxide to quantitate the 
amount of fat present. Quantitation is based on the mean molecular weight of fatty acids in 
faeces (276 based on C18). 
 
Quantitative analysis and calibration curves 
Before storing the spectra on disk a baseline correction was performed with an integration 
area in the range 3400–2400 cm–1 for the 2855 absorbance band and 1900–1600 cm–1 for the 
1709 absorbance band. MLR (11) (Systat 7.0, SPSS Inc. Chicago, IL, USA) using stepwise 
variable selection was done to select the best-performing absorbance band(s) (1458, 1467, 
1709, 2855, 2928 and 2957 cm–1) to predict the quantity of fatty acids in the stool. For 
MLR, 30 of the 97 patient samples were selected in a range 0.5–17.9 g% fat as estimated 
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using the Van de Kamer method. The composition of the primary standards, for generation 
of the calibration curve, was based on a previous study in which 69 faecal samples were 
analysed by gaschromatography (12). In this study, petroleum ether extracts of the faecal 
samples (prepared as described in the sample preparation section) were transmethylated and 
injected in a gas chromatograph to obtain the fatty acid composition. Most of the faecal fat 
samples were composed of mainly C16 and C18 fatty acids (median 83%) and small amounts 
of C14 and C20 fatty acids (median 17%). After omitting the small amount of C14 and C20 
fatty acids, the mean C18:C16 composition of the 69 samples showed to be 65:35. Therefore 
each hospital used primary standard mixtures of stearic/palmitic acid (Sigma-Aldrich 
Chemie BV, Zwijndrecht, The Netherlands) with this composition for the calibration curve, 
in the range 0–15 g%, using simple linear regression analysis. The primary standards were 
handled in the same way as the faecal samples (prepared as described in the sample 
preparation section). Results of faecal fat analysis are normally expressed as g% total fat 
(triglycerides). As our new method is based on calibration with free fatty acids it gives a 
slight underestimation if the results are expressed as g% fat. This underestimation is 4.5% 
(13/287), because the mean molecular weight of total fat is 287 (13 for triglyceride for the 
part glycerol residue (1/3) and 274 for the mean molecular weight of the stearic-palmitic 
acid mixture). 
To test the linearity of the regression equation of the calibration the runs test (13) was used, 
each calibration point being measured four times. The runs test compares the number of 
series of consecutive points below and above the regression line to a number of series found 
at random. 
 
Imprecision 
The imprecision of the FT-IR method was tested for two stool samples with a low (2.6 g%) 
and high (7.6 g%) fat contents, respectively. Intra-assay reproducibility was tested by a 10-
fold measurement of each stool. Analysing one sample from each stool during 11 
consecutive days enabled inter-assay reproducibility to be determined. 
 
Accuracy 
Passing & Bablok regression analysis (14) was used to compare the results of the Van de 
Kamer and FT-IR methods, using the 97 patient samples from the patients. 
 
Inter-laboratory differences 
To obtain information on inter-laboratory differences in faecal fat measurements using both 
the Van de Kamer method and the new FT-IR sample preparation method in combination 
with calibration standards, 28 faecal samples were selected from patient mentioned above. 
Selection of these samples was based on their fat content, over the range 0–15 g% fat, as 
determined by the Van de Kamer method.  
The 28 samples were analysed in the two university hospital laboratories possessing a FT-
IR spectrometer with flow cell, and the differences between the laboratories were 
statistically tested with a paired student-t test.  
The same 28 samples were analysed in all three hospitals by the Van de Kamer method, and 
the results were analysed statistically using the Friedman test for pairwise differences (13). 
In all cases, P-values ≤ 0.05 were considered to be statistically significant. 
 



An improvement of standardization 
 

 
95 

RESULTS 
Figure 1 shows the spectral region of interest in the IR spectrum of an extracted stool 
sample. Bands reflecting the CH-stretch vibration of the fatty acid methylene residues, are 
observed at 2928 cm–1 (antisymmetric), and 2855 cm–1 (symmetric), whereas the C=O 
stretch vibration of the carboxylic acid functionality is observed at 1709 cm–1. Chloroform 
showed no interference in the spectral region of interest (2950–1650 cm–1), in contrast to 
petroleum ether. The petroleum ether was therefore evaporated from the lipid extract and 
the dried extract was re-dissolved in chloroform.  
Of all the measured IR-absorbance bands (1458, 1467, 1709, 2855, 2928, and 2957 cm–1) of 
an extracted stool, the one at 2855 cm–1 appeared to be the best at predicting the quantity of 
fatty acids, directly followed by the band at 1709 cm–1. The single band at 2855 cm–1 
proved to be sufficient for calibration (highest F-value). 
The results using the Van de Kamer method for the 28 stools differed significantly between 
the three university hospital laboratories (Friedman test, P≤0.0001), demonstrating the 
interlaboratory imprecision of the Van de Kamer method in practice. Because the accuracy 
of the FT-IR method depends upon the accuracy of the calibration used, we decided to use 
primary standards composed of stearic and palmitic acids (65:35) instead of the Van de 
Kamer method and created a calibration set over the concentration range 0–15 g%. 
The calibration curve of the primary fatty acid standards was linear from 0 to 12 g% and 
departed slightly (P=0.012) from linearity when the standard mixture 15 g% was included 
(runs test, Fig. 2). Thus, the primary fatty acid standards used to generate the calibration 
curve for FT-IR can serve as an accurate alternative to the conventional Van de Kamer 
method. 
 

 
Figure 1. Fourier transform infrared spectrum of a faecal fat extract in chloroform obtained from a patient's stool 
containing 12.8 g% fat. 
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Comparison of the results obtained in one university hospital for faecal fat in 97 stool 
samples analysed with the Van de Kamer and FT-IR methods, using the stearic–palmitic 
acid calibrationcurve, showed a slope of 1.16 (95 % CI 1.100–1.222), an intercept of –0.023 
(95% CI 0.122–0.073), a correlation coefficient of 0.96 and a standard error of prediction 
(SEP) of 0.89 g% fat (Fig. 3: Passing & Bablok regression analysis).  
The intra- and inter-assay coefficients of variation (CVs) of faecal fat estimation by means 
of FT-IR were 4.7% and 10.0%, respectively, for the stool sample with a faecal fat content 
of 2.6 g%. Intra- and inter-assay CVs were 2.6% and 8.5%, respectively, for a faecal fat 
content of 7.6 g%. Comparison of the FT-IR measurements in the two university hospital 
laboratories of the fat (g%) in 28 stool samples, using the stearic–palmitic acid calibration 
curve for quantification, in the two university hospital laboratories showed no statistically 
significant difference (paired Student's t-test, P=0.915).  
 
DISCUSSION 
Modern mid-infrared FT-IR spectrometers have a high potential for applications in clinical 
chemistry, in that they provide high signal-to-noise ratios, high resolution and extensive 
data processing possibilities by means of computer software packages (10;15). 
 

 
 
Figure 2. Calibration curve for the Fourier transform infrared absorbance values at 2855 cm–1 using weighted 
stearic–palmitic acid standards (65:35). Absorbance values were baseline corrected. The curve can be described 
by y=0.0302x + 0.005 (r=0.99; Standard error of calibration=0.006 g% fat); slope= 0.0302 (standard deviation: 
SD=0.0002), intercept=0.0045 (SD=0.0016). 
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Previously, Franck et al. (10) reported on the use of a horizontal attenuated total reflection 
crystal for mid-infrared spectroscopy on stools. We tested their method, but could not 
reproduce their results. Close inspection of their results revealed that they used a selection 
of stools, excluding those that were too liquid, too solid, or which contained visible food 
particles or other fragments. Moreover, water appeared to cause major interference in their 
spectra as its absorption in the mid-infrared is very strong and tends to override the spectral 
characteristics of the other compounds of interest. Because water is the major component in 
stools (amounting to 60–90%), this makes the method of Franck et al. less appreciable. Our 
approach of using a simple extraction step of fatty acids from stool prevents the interfering 
effect of water. Another advantage of this separation of fatty acids from stools is the 
exclusion of water-soluble interfering substances, and the opportunity to use a primary 
standard (stearic–palmitic acids) for calibration.  
We used the absorptions of the CH symmetric (2855 cm-1) or the C=O stretch vibrations 
(1709 cm–1) of the primary fatty acid standard for quantification. Other methods based on 
NIRR or FT-IR, without sample purification, use complex mathematical models, like MLR 
and PLS for quantification and require the analysis of at least 30 samples by the reference 
method (Van de Kamer) to obtain a reliable mathematical model (7-9).  
 

 
Figure 3. Relationship of fat estimated by Fourier transform infrared (FT-IR) and Van de Kamer methods. The 
solid line is the Passing & Bablok regression line (y=1.164x - 0.023; r=0.96; standard Error of Prediction=0.89 
g% fat; n=97). The dotted line denotes the line of identity. The difference of 4.5% for the amount of fat (g%) 
determined by FT-IR, which results from the use of a mixture of free fatty acids instead of triglycerides as a 
calibrator, is taken into account (see text). 
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Van de Kamer (16) has very comprehensively tested the analytical recovery of the 
extraction procedure. After a single extraction with acidified petroleum ether–ethanol, a 
recovery of 98% from stool was obtained for fatty acids with a chain length greater than or 
equal to C14 (3). This method, however, gave significantly different results between samples 
analysed in the three university hospital laboratories, whereas our FT-IR method, calibrated 
with a primary standard, gave interchangeable results for the fat content in stools measured 
in two different university hospital laboratories.  
 
Furthermore, within one laboratory the fat content measured by the Van de Kamer method 
differed significantly from that found by our standardized FT-IR method (Fig. 3). Both 
these differences (the Van de Kamer method between laboratories and between Van de 
Kamer and our FT-IR method) can be attributed to the lack of standardization of the 
conventional titrimetric method, which could result in deviation from the true value and 
decreased precision. Improvemed of the inter-laboratory variation of the Van de Kamer 
method may be achieved by distributing a calibrator. This might of course also further 
improve the inter-laboratory variation of the new FT-IR method. However, optimization of 
the Van de Kamer method does not seem to be useful, as the new FT-IR method has a total 
analysis time at least 50% shorter than the Van de Kamer method and the results of the FT-
IR method agree well with the Van de Kamer method (Fig 3).  
The use of two fatty acids standards enables the calibration of both the CH2 and the C=O 
bands. Determination of the relative quantity of the CH symmetric stretch vibration of the 
CH2 residues, the C=O stretch vibration of the carboxylic acid functionality of free fatty 
acids (1709 cm–1) and the C=O vibration of glycerol esters (1746 cm–1) allows the 
identification of abnormal fatty acids:triglycerides ratios in faeces by calculation of the 
absorbance ratio of CH2 (2855 cm–1):C=O (1746 cm–1 or 1709 cm–1). These spectral 
fingerprints can be of clinical use (17). Normally about 95% of faecal fat is excreted as 
soaps of free fatty acids (16). However, theoretically, in faecal samples of patients with 
maldigestion, due to cystic fibrosis, chronic pancreatitis (diminished amount of lipase), or a 
lack of bile acid secretion in the gut, increased amounts of glycerol esters can be found in 
stools.  
 
Conclusion 
The new FT-IR method is simple and enables rapid diagnosis and monitoring of 
steatorrhoea. A further decrease in total analysis time could be achieved by using automatic 
sampling devices for FT-IR spectrometers. We have also shown that this method is more 
precise with respect to inter-laboratory variation than the Van de Kamer method. The use of 
primary standards for calibration facilitates the introduction of this method in other 
laboratories using mid-infrared spectroscopy. For routine application we recommend 
inclusion of a fatty acid standard mixture in the extraction procedure to check extraction 
efficiency and reproducibility.  
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INTRODUCTION  
Recently, we presented an improved procedure for the determination of fecal fat by means 
of Fourier transform infrared spectroscopy (1). This method can be used in laboratories 
equipped with a mid-infrared spectrometer. With this method, fecal fat was extracted from 
stool samples with petroleum ether–ethanol. After extraction, the petroleum ether was 
dried, and the fatty acids were redissolved in chloroform before measurement. Because the 
extraction procedure in the previously described analytical method (1) was still rather time-
consuming, we replaced the petroleum ether–ethanol extraction with a single chloroform 
extraction.  
 
MATERIALS AND METHODS 
In the new extraction procedure, 1 gram of homogenized stool sample was suspended in 2.5 
mL water. After the suspension was mixed, 0.5 mL of 12 mol/L HCl and 2.0 mL of 
chloroform (gradient grade) were added, and the sample was shaken vigorously for 10 min. 
At this stage, the samples were either stored at –20 °C or analyzed immediately. The extract 
was centrifuged for 5 minutes at 3000g at room temperature, after which the organic layer 
was transferred to a transmission cell (path length, 0.05 mm) with calcium fluoride crystals.  
 
Spectra (n=111) were scanned in the mid-infrared region from 4000 to 650 cm–1 with a 
Perkin-Elmer Spectrum 2000 spectrometer (Perkin–Elmer). Calibration was performed with 
a mixture of stearic and palmitic acid (65:35, by weight) ranging from 0 to 150 g/kg (1). 
For both the ‘old’ and the ‘new’ extraction procedures, the spectroscopic band at 2855 cm–1 

(C–H symmetric stretch vibration) was used to calculate the amount of fat (g/kg). Passing 
& Bablok regression was performed for method agreement.  
 
RESULTS 
The results obtained by the two methods showed good agreement (r = 0.991; Fig. 1). By 
Passing & Bablok regression, the slope was 1.055 (range, 1.026–1.088), the intercept was 
0.241 (range, 0.181–0.296), and the standard deviation of residuals (Sy|x) was 0.365. For the 
new extraction procedure, the intra- and interassay imprecision (as the CVs; n=10) was 
4.0% and 5.0% respectively, for a stool sample containing 43 g/kg fat. For a sample with 26 
g/kg fat, the intra- and interassay CVs were 3.9% and 10.0%, respectively. Recovery of the 
stearic–palmitic acid (65:35, by weight) calibrator added to stool was >95% with the new 
extraction procedure. The majority of fecal fat is mainly composed of C16:0 and C18:0 free 
fatty acids which can be extracted easily from the stool with the new extraction method. 
The reduction in analysis time gained in this way is approximately ~2.5 h for a series of 10 
stools.  
 
DISCUSSION 
We conclude, that the new simplified extraction procedure for fecal fat determination gives 
comparable results to the old extraction procedure and allows considerable reduction in 
analysis time, use of chemicals, and technical equipment.  
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Figure 1. Relationship of fecal fat (n=111) determined with the old and new extraction procedure. Absorbance 
values at 2855 cm–1, obtained with Fourier transform infrared spectroscopy, were used for calibration.  
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ABSTRACT 
In many laboratories, the titrimetric method of Van de Kamer is used for the analysis of 
faecal fat content of patients suspected of steatorrhoea. We investigated the applicability of 
a mid-infrared (MIR) spectroscopic method using an Attenuated Total Reflection (ATR) 
accessory and a new near-infrared (NIR) spectroscopic method. For the NIR method sealed 
plastic bags, containing the stool samples, were used as transmission cells. Standardization 
was obtained using a previously described MIR method, with a NaCl flow-cell, as reference 
method. Partial least-squares regression was used for the calibration of each method. Full 
cross-validation of the calibration set was used for internal validation of each method. 
Fifteen per cent of the stool samples could not be estimated with the ATR method within 
reasonable accuracy limits compared with the reference. The standard error of prediction of 
the NIR method was 1.1 g/dL. We conclude that the new NIR method is a promising 
technique for routine use. However, some further experiments need to be done with 
triplicate measurements of each sample and the use of an external validation set.  
 
 
INTRODUCTION 
The titrimetric method described by Van the Kamer et al. (1) is still the most important 
direct assay of faecal lipid content for diagnosis and monitoring of steatorrhoea. However, 
various other traditional laboratory assays, such as gravimetric (2) and acid steatocrit (3) 
methods, are also used for the determination of faecal fat. Unfortunately, most of these 
methods are timeconsuming and cumbersome for laboratory technicians. 
Other assays, based on infrared (IR) measurements have been developed. Several authors 
reported on the use of a near-infrared (NIR) reflectance method (4-7), some of which used a 
gold-plated integrating sphere as sampling device. One of these publications (7) described 
NIR reflectance measurement through a polyethylene– polyamide film.  Recently, Franck et 
al. described a method based on mid-infrared spectroscopy (MIR) using an attenuated total 
reflectance (ATR) sampling device (8). They noted that some preselection of samples was 
necessary. The advantage of their method is that it makes use of standard Fourier transform 
infrared (FT-IR) equipment that can also be employed in other clinical chemical 
applications, such as the analysis of the composition of urinary stones (9). Both IR methods 
are based on reflectance measurements. The major advantage of these infrared 
spectroscopic methods for faecal fat determination is that the measurements can be 
performed on untreated stool samples. This prevents prolonged handling of stools using 
extraction procedures. 
In case of conventional assays, simple calibration and calculation methods can be used, 
often based on primary standards mixtures. However, measurements of untreated stool 
samples containing a large number of interfering substances result in complex IR spectra. 
Calibration and prediction of the component concentrations of interest, in the presence of 
many interfering substances, require the use of more sophisticated multivariate calibration 
methods such as multiple linear regression (MLR) and partial least-squares (PLS) 
regression (10). Consequently, measurements of untreated stool samples require secondary 
reference samples for calibration. These are biological samples from which the sample 
compositions have been determined by means of a generally accepted method, such as that 
of Van de Kamer. However, Bekers et al. (5) highlighted the need to create a new 
calibration curve in every clinical chemical laboratory, when using secondary reference 
samples. A paper describing a multicentre trial showed that the results of the Van de Kamer 
method were poorly exchangeable (11). The authors of this paper developed a method, 
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based on a simple extraction of faecal fat from stool samples and determination by MIR 
spectroscopy using a NaCl transmission cell, which resulted in improved standardization. 
The aim of the current study was to investigate the applicability of IR spectroscopic 
methods for the determination of faecal fat, without the necessity of any sample pre-
treatment. We developed a new NIR spectroscopic method using plastic bags as 
transmission cells. We also reinvestigated the applicability of the MIR spectroscopic 
method using the ATR sampling device (8). Standardization was obtained with the 
previously described MIR technique as a reference method (11).  
 
MATERIALS AND METHODS 
Sample collection 
One hundred and nineteen stool samples were collected from patients suspected of 
malabsorption and maldigestion. The stools were collected over three successive days, 
stored at –20ºC until analysis and carefully homogenized before measurement. 
Homogeneity was obtained by manually blending the complete stool sample with a stirring 
rod for at least 4 min. From each stool, the relative water content was determined by 
weighing the sample before and after freeze-drying. A visual estimation of the homogeneity 
was also recorded. 
 
Determination of faecal fat using the flow-cell reference method 
The fat content of the 119 stool samples was estimated with the MIR cell method (11). 
Briefly, after addition of HCl and ethanol, all samples were extracted once with petroleum 
ether. After evaporation of the lipid extracts, the samples were dissolved in chloroform and 
measured in a NaCl transmission flow-cell (path length 0.1 mm; Specac Ltd, Kent, UK). 
Primary standard mixtures of stearic–palmitic acid (65:35) were used for calibration. 
Chloroform was used for background measurements. The spectra were recorded in the MIR 
region from 3500–1500 cm–1, at 4 cm–1 wavenumber intervals, using a Bio-Rad Excalibur 
FTS 3000MX spectrometer, with Merlin software (Bio-Rad, Cambridge, MA, USA). 
Calculation was based on the peak height of the CH2 band at 2855 cm–1. Each stool sample 
was analysed in duplicate. The measured faecal lipid contents of the stools were used as 
secondary reference standards. 
Determination of faecal fat using the ATR method 
The homogenized samples (n=119) were spread out on a horizontal attenuated total 
reflectance (h-ATR) sampling device and measured with the FTS 3000MX spectrometer. 
Each sample was analysed in duplicate. Between each measurement the ATR crystal was 
successively cleaned with water and 96% alcohol and then carefully dried under a steam of 
nitrogen. The h-ATR trough plate assembly was supplied with a nine-reflection ZnSe 
crystal (Pike Technologies, Madison, WI, USA). Background measurements were 
performed with water on the crystal. The spectra were acquired in the MIR region from 
4000–750 cm–1 at 4 cm–1 wavenumber intervals.  
The recorded absorbance spectra were transferred to a program for quantitative analysis 
(The Unscrambler 6.11; Camo ASA, Oslo, Norway). With this program the fingerprint area 
of the spectra (1800–900 cm–1) was selected. The variances of the spectra were unified by 
normalization (10) of every spectrum with respect to its area under the curve of the selected 
wavenumbers. PLS regression was used for calibration, using the results of the flow cell 
method as reference data. 
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Determination of faecal fat by means of the new ‘NIR’ transmission method 
For 12 samples we did not have sufficient material to perform the analysis. From the 
remaining 107 samples, about 2–3 g of each stool sample was transferred to a transparent 
plastic bag of polyethylene film, 25 µm thick. After vacuum-sealing the bags, the samples 
were measured with a new transmission device (PB Sensortechnology & Consultancy bv, 
Westeremden, The Netherlands). Using this device, the path length of the 'plastic bag’ 
transmission cells was set at exactly 5.0 mm. The optical beam diameter was 1 cm. Each 
sample was measured twice, using a different spot of the sample in the plastic bag. A 
plastic bag filled with air was used as reference measurement (blank or 100%). The spectra 
were acquired in the NIR region from 850–1400 nm, at 5 nm wavelength intervals, using a 
scanning spectrometer (Fig. 1). This spectrometer was made up of the following 
commercially available parts: tungsten halogen light source (30 W), SpectraPro 
Monochromator (150 mm), grating (bandpass performance 5 nm), InGaAs detector (5 mm), 
quartz lightfiber (6 mm) and a Spectracard for data acquisition (all from Acton-Research, 
Massachusetts, USA). The recorded absorbance spectra were transferred to Unscrambler 
for quantitative analysis. The wavelength range of 900–1375 nm was selected. The spectra 
were normalized on their area under the curve. After this, each spectrum was smoothed 
with the Stavitzky-Golay method (12) using a polynomial order of 5. Partial least squares 
(PLS) regression was used for calibration, using the results of the flow cell method as 
reference data. 
 

 
Figure 1. Scanning spectrometer and transmission device. 

PLS regression of the ATR and NIR measurements 
To prevent the occurrence of over-optimistic results derived from the PLS regression, full 
cross-validation was used, in which each calibration sample was successively removed 
from the calibration set and considered as an unknown. The result of this ‘unknown sample’ 
was then predicted based on the remaining n–1 calibration samples. In all cases, the results 
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from this so-called internal ‘cross-validation’ method, based on patient data, were used for 
method comparison. The internal cross-validation results were also used for estimation of 
the optimum number of PLS factors (10), to prevent over- or under-fitting of the calibration 
model. The optimum number of PLS factors accounts for most of the predictive ability of 
the PLS calibration model.  Using PLS regression, an extensive outlier- and influence 
detection was carried out (10). 
 
Method comparison 
The NCCLS EP9A guidelines were followed for method comparison using patient samples. 
Passing and Bablok regression (13) was used for the determination of the agreement 
between the reference method (flow-cell) and the ATR, and NIR methods. Samples with 
high within-method or between-method duplicate outliers were removed, according to the 
EP9A guidelines. In addition, we also calculated the within-method duplicate error, 
expressed as a standard deviation. The duplicate results of each sample were averaged, 
before performing the Passing and Bablok regression. In addition to the slope, intercept and 
correlation coefficient, the standard error of prediction (SEP, also expressed as SY|X) was 
calculated for the estimation of the prediction bias. 
Precision and linearity of the methods 
The analytical precision and linearity of the ATR and NIR methods were tested using 
Lipofundin (Braun Melsungen AG, Melsungen, Germany), a lipid-containing intravenous 
fluid with 20% medium-chain/long-chain triglycerides. Two concentrations were used: 5% 
and 10% lipid. We also performed precision measurements using two stool samples, with 
6.4 g/dL and 10.0 g/dL faecal fat, respectively.  
The repeatability (intra-assay) was tested by means of an independent six-fold (Lipofundin) 
or ten-fold (stool samples) measurement at each level. The reproducibility (inter-assay) was 
obtained by measuring each level in duplicate on six (Lipofundin) or ten (stool samples) 
consecutive days. From these data, the intra-, and inter-assay coefficient of variation (CVs) 
were calculated. The linearity of the methods was tested with a Lipofundin dilution series, 
ranging from 2.5% to 20% lipid at 2.5% intervals. Each concentration level was measured 
five times. The Lipofundin dilution series was also used as a calibration model for the 
Lipofundin precision measurements, in accordance with the calculation methods as 
described for the ATR and NIR methods.  
 
RESULTS 
The majority (77%) of the stool samples had normal water contents (70–80%), 10% had a 
water content less than 70% and 13% of the stools contains more than 80% water; 92% of 
the samples had a normal visually estimated homogeneity (no visible food, or other 
fragments). Faecal fat analyses with the flow-cell method showed that 117 out of 119 stool 
samples had fat contents in the range 0.2–18.9 g/dL [g fat/100 g faeces wet weight (w/w-
%)]. These fat contents were equally distributed among the entire concentration range. Two 
of the 119 samples had an extremely high fat content (30.1 and 31.1 g/dL, respectively) and 
were only used as external validation samples for the ATR and NIR methods. Selection of 
the spectral regions for PLS regression was based on inspection of the PLS loading weights 
and regression coefficients for both the ATR and NIR methods. For the ATR method a 
continuous wavenumber range from 1800–900 cm–1 (fingerprint area) was selected, 
whereas for the NIR method a wavelength range of 900–1375 nm was selected. Figure 2a 
shows ten NIR spectra for the selected wavelength range (stool samples ranging from 1.0 to 
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4.6 g/dL fat). Figure 2b shows the PLS regression coefficients of the NIR spectra of the 
final calibration model, showing the most important spectral phenomena. Figure 2c shows a 
spectrum of sunflower oil. 
 
After PLS regression applied on the 117 ATR spectra, 16 samples proved to be outliers 
with great influence on the PLS regression analysis compared to the flow-cell method. 
After removing these 16 samples, 14 PLS factors were necessary to obtain a stable PLS 
regression using full cross-validation. For these 101 remaining calibration samples neither 
within- nor between-method outliers were found according to the EP9A guidelines. The 
Passing & Bablok comparison method applied on the 101 ATR samples demonstrated a 
slope of 0.935 (0.865 – 1.006), an intercept of 0.433 (-0.152 – 0.824), a correlation 
coefficient of 0.9411, and a SEP of 1.1 g/dL, compared with the flow-cell method. 
 

 
Figure 2. (a) Selected part of ten NIR spectra containing 1.0-4.6 g/dL fat. (b) PLS regression coefficients obtained 
with PLS regression analysis from the NIR calibration spectra. (c) Spectrum of sunflower oil. 
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PLS regression analysis of the 105 patient samples analysed with the NIR method did not 
show influencing outliers. However, 1 sample had to be removed from the calibration data, 
because it turned out to be a between-method outlier based on the EP9A guidelines. After 
removing this sample, 8 PLS factors were necessary to obtain a stable PLS regression, 
using full cross-validation. Passing & Bablok comparison applied on the PLS regression 
results from the remaining 104 NIR patient samples demonstrated a slope of 0.964 (0.902 – 
1.025), an intercept of 0.218 (-0.141 – 0.576), a correlation coefficient of 0.9570 and a SEP 
of 1.1 g/dL fat, compared to the flow-cell method. 
 
Figure 3 shows the Passing & Bablok method comparison charts for the ATR (3a) and NIR 
(3b) methods, both against the estimated fat content obtained with flow-cell method. 
All outliers, including the two samples with more than 30 g/dL fat, were analysed as 
external validation samples. The PLS predicted data from the 18 ATR outlier spectra are 
shown in Fig. 4. Seven out of the 18 outliers were stool samples with low or high water 
contents, or had abnormal visual homogeneity. 
 

 
Figure 3. Passing & Bablok method comparison charts of the ATR method against the flow-cell method (a) and of 
the NIR method against the flow-cell method (b). The results from the ATR and NIR methods were obtained from 
the cross-validation results of the PLS analysis. The continuous line denotes the Passing & Bablok regression line 
and the dotted line denotes the line Y=X. 

 
Only two of the ATR outlier samples corresponded to the 12 samples that were unavailable 
for NIR analysis because of lack of sample material. The predicted outcome (in g/dL) of the 
three samples (one between-method outlier and two extreme fat contents), which were left 
out of the NIR method, were: 11.9/15.1, 30.1/32.3 and 30.1/35.6 (‘flow-cell’/ ‘NIR’, 
respectively).  
The within-method duplicate error (expressed as standard deviation) obtained by the PLS 
cross-validation results of the ATR method was 0.55 g/dL, and 0.74 g/dL for the NIR 
method. The results from the precision and linearity measurements of the ATR and NIR 
methods are shown in Table 1. 
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Figure 4. Scatter plot of 18 PLS-predicted outlier samples obtained with the ATR method against the results 
obtained with the flow-cell method. The dotted line denotes the line Y=X. 

 
DISCUSSION 
FT-IR measurements of untreated stool samples can be performed rapidly, without 
prolonged handling of stool samples. Several authors reported on the use of a NIR 
reflectance method (4-7), some of them using a gold-plated integrating sphere as sampling 
device in combination with dedicated equipment. However, in clinical chemistry, the 
applicability of this rather expensive equipment is restricted to the application of fat, sugar, 
nitrogen and water contents of faeces. Therefore, the applicability of this equipment is 
hampered by the necessity of substantial numbers of samples to be analysed in order to 
justify the purchase of the apparatus (5).  
Franck et al. (8) described the use of a FT-IR method, employing an ATR sampling device, 
for the prediction of faecal fat. They made preliminary sample selections, based on the 
faecal water content and the sample homogeneity. Only samples with normal water 
contents (called type P1 and P2) and normal homogeneity are allowed to enter the PLS 
regression analysis. Using these criteria, about 65% of all stool samples from patients 
suspected of steatorrhoea could be analysed by IR spectroscopy. 
 
We also examined the applicability of this ATR method, but did not use such preliminary 
sample selections. Fifteen percent (18 out of 119) of our samples proved to be serious 
outliers using PLS regression with full cross-validation. Only 39% (seven out of 18) of 
these outliers turned out to be abnormal with respect to water contents or visual 
homogeneity, suggesting that there must be additional factors causing these outliers. ATR 
is a reflectance measurement with an extremely small penetration depth (maximally 5 µm 
in the MIR region) in a sample spread on the ATR crystal (14). Fat is highly insoluble in 
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water, and even small departures from sample homogeneity could cause errors using this 
method. Using the ATR method, it was necessary to use 14 PLS factors to obtain a stable 
PLS regression equation. From this high number of factors it can be concluded that the 
ATR spectra (in the region 1800–900 cm–1) have a too complex matrix structure to be 
solved with PLS regression. 
 

Table 1. Precision and linearity 

Method Intra-assay % CV Inter-assay % CV Linear range* 

(2.5 g/dL 

intervals) 

Lipofundin 

(n=6) 
5 g/dL fat 10 g/dL fat 5 g/dL fat 

10 g/dL 

fat 
 

ATR 2.6 1.1 2.8 1.6 2.5–17.5 g/dL 

NIR  2.0 2.7 4.5 3.8 2.5–20.0 g/dL 

      

Stool sample 

(n=10) 
6.4 g/dL fat 10 g/dL fat 6.4 g/dL fat 

10 g/dL 

fat 
 

ATR  2.9 2.0 3.5 2.2  

NIR 4.1 3.9 4.7 4.5  

CV = coefficient of variation; ATR = attenuated total reflection; NIR = near-infrared. 
 * Repeated five times 
 
We developed a new NIR method based on traditional transmission measurement. 
Unfortunately, water causes very high absorbance levels in the NIR region. To minimize 
these absorbance effects, we used only the lower part of the NIR infrared region (850–1400 
nm) to retain sufficient path length for our transmission measurements. Another cause of 
the loss of light is the degree of light scattering caused by the sample. Using the NIR region 
from 850–1400 nm it was possible to use a path length of 5 mm. We also used an optical 
beam diameter of 1 cm, which consequently covered a large part of the sample. The 
thickness of the polyethylene film of plastic bag amounted to only 1% of the total path 
length. To compensate for possible side effects of the plastic film, we also used an empty 
plastic bag for blank measurements. Using a continuous spectral range from 900 to 1375 
nm proved to be the best for PLS regression. In this spectral region, the CH2 second 
overtone band (C–H stretch) at 1215 nm (15) was demonstrated to be the most important 
band for lipid calibration (Fig. 2b). Only one sample was detected as an outlier, using this 
method.  
After removing the outliers from the calibration datasets, the slopes of the two methods 
(ATR and NIR) did not substantially differ from 1.0 and the intercepts were not 
significantly different from 0.0 using Passing and Bablok regression analysis. The SEP of 
both methods was 1.1 g/dL using full cross-validation. We used a reasonable large number 
of calibration samples covering the actual concentration range. We also performed careful 
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PLS modelling, aiming at reduction prediction error. This was done by data pre-processing, 
optimising the number of PLS factors to prevent under and over-fitting of the model, and 
by looking for possible outliers. Therefore, we expect that the errors obtained with the full 
cross-validation procedure will be similar to the errors that will be obtained with an 
external validation set (10). Franck et al. (8) obtained a similar SEP (1.06 g/dL), using 91 
external validation samples with concentrations ranging from 0.5 to 13.5 g/dL fat. 
A large number of the 18 samples determined as outlier with the ATR method had severe 
deviations from the flow-cell method when their fat contents were determined as validation 
samples (see Fig. 4). No such severe deviations were found for the three validation samples 
of the NIR method: 11.9/15.1, 30.1/32.3 and 30.1/35.6 g/dL lipid for the flow-cell /NIR 
methods, respectively.  
The linear ranges of the ATR and NIR calibration methods were large enough to cover the 
faecal fat concentrations of patient samples suspected of steatorrhoea. The analytical 
precision of the NIR method is slightly less than that of the ATR method, but good enough 
for routine practice, because the sampling errors of faecal fat determination are probably 
much larger. The within-method error of the NIR method (0.74 g/dL) is greater than that 
obtained by the ATR method (0.55 g/dL). Inspection of the EP9A scatter plot for the flow-
cell and NIR methods of all the results (contrary to the mean of the replicates in Fig. 3b) 
showed that many of the replicate results from the NIR method deviate to some extent from 
each other. However, these differences were all within the acceptability levels of the 
within-method duplicate test, according to the EP9A guidelines. From this finding, we 
conclude that it would be advisable to perform at least a triplicate measurement of each 
stool sample, using the NIR method. 
Based on our findings and those of Franck et al. – namely, that the fat content of a certain 
number of stool samples could not be estimated with the ATR method within reasonable 
accuracy limits compared with the reference method – we do not recommend the use of this 
method. As mentioned earlier, we think that this result is probably caused by the very small 
penetration depth in the sample material.  
Finally, we conclude that the NIR method, using sealed plastic bags as transmission cells, 
makes handling of the stool samples less cumbersome for laboratory technicians. The 
linearity, precision and SEP of the NIR method seem to be adequate for routine practice of 
the calibrated and evaluated concentration range. However, some further experiments 
should be done with triplicate measurements of the stool samples and using an external 
validation set. Based on our findings we think that the new NIR method, based on 
transmission measurements, is a promising technique for routine analysis of faecal fat. 
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ABSTRACT 
Quantitative assessment of urinary calculus (renal stone) constituents by infrared analysis (IR) 
is hampered by the need of expert knowledge for spectrum interpretation. Our laboratory 
performed a computerized search of several libraries, containing 235 reference spectra from 
various mixtures with different proportions was performed. Library search was followed by 
visual interpretation of band intensities for more precise semi-quantitative determination of the 
composition. We tested partial least-squares (PLS) regression for the most frequently 
occurring compositions of urinary calculi. Using a constrained mixture design, we prepared 
various samples containing whewellite, weddellite and carbonate apatite and used these as 
calibration set for PLS regression. The value of PLS analysis was investigated by the assay of 
known artificial mixtures, and selected patients' samples from which the semiquantitative 
compositions were determined by computerized library search followed by visual 
interpretation. Compared with this method, PLS analysis was superior with respect to accuracy 
and necessity of expert knowledge. Apart from some practical limitations in data-handling 
facilities, we believe that PLS regression offers a promising tool for routine quantification, not 
only for whewellite, weddellite and carbonate apatite, but also for other compositions of the 
urinary calculus. 
 
 
INTRODUCTION 
At present, >95% of all patients with urolithiasis are successfully treated with extracorporal 
shock wave lithotripsy [ESWL] in combination with intracoporal methods (1) for in situ 
calculi fragmentation. For patients with urinary stones in the ureter the percentage of success 
with ESWL treatment is <95%. Because of the high frequency of stone recurrence, which 
amounts to ~50% after 10 years (1), and limitations that exist for manipulative surgical 
intervention, there is increasing need for causal therapy. It is therefore important to be 
informed about the composition of the urinary calculi. In contrast to classical surgery for 
extracting renal calculi from the urinary tract, ESWL is hindered by the fact that often many 
calculi fragments are lost for further analysis. Since the introduction of ESWL in our hospital, 
~3 years ago, we have found that, because of insufficient material, the composition of 34% of 
the urinary calculi presented to our laboratory could not, or only partly be determined with the 
classical wet chemical procedure. Infrared analysis (IR) of urinary calculi does not have this 
disadvantage. Using the KBr disk technique, samples as small as 1 mg can be analyzed (2). 
Other advantages of IR analysis over wet chemical analysis are higher speed, better 
reproducibility, and uniform sensitivities for all components (3). For these reasons the IR 
method was introduced in our laboratory. 
The primary objective of urinary calculus analysis is to determine the qualitative composition. 
However, quantitative assessment of constituents, with a precision of 5-10% for individual 
components, is also important (4). Routine usage of IR is hampered by the need to interpret IR 
spectra from >20 components in different combinations and proportions. Systematic schemes 
have been developed for objective qualitative analysis of IR spectra of calculi (5). Hesse and 
Sanders (6) issued an atlas containing a collection of about 225 IR reference spectra from the 
most commonly encountered urinary calculus components and their binary and ternary 
mixtures. At present most IR spectrophotometers are accompanied by software packages that 
offer possibilities to produce libraries of digitized spectra and of searching for unknown 
compositions by matching the unknown spectra with those within the library. Expert systems 
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should also be suitable for pattern recognition tasks. Although described for x-ray diffraction 
analysis of urinary calculi (7), no expert system has never been applied to the IR technique as 
far as we know. Unfortunately all these methods for the interpretation of IR spectra are only 
semiquantitative.  
Urinary calculi are multicomponent mixtures, most being composed of two or three 
components. Simple linear regression is not appropriate for quantification in these cases. 
Multivariate calibration methods, such as classical multiple linear regression, inverse linear 
regression, principal component regression and partial least-squares (PLS) regression, have 
been developed for quantitative spectral analysis (8). The most robust alternative of these 
methods (9), the PLS method, is used for some spectral applications (10,11). If the Lambert–
Beer law holds spectroscopic data (X) can be linearly related to the concentrations (Y), after 
factorial decomposition with PLS. The reference samples, also called training set, or 
calibration matrix, are used to estimate the regression coefficients. A test set consisting of 
independent reference samples is used to validate the quality (stability) of the PLS model. This 
test set can also be used to estimate the composition of unknown samples. 
The aim of our work was to develop a library with IR reference spectra of authentic 
components and mixtures and to test a PLS model for the most frequently occurring 
compositions of urinary calculi. 
 
MATERIALS AND METHODS 
Samples 
Library search and PLS were performed on mixtures of calcium oxalate dihydrate (whewellite; 
BDH, Brunschwig Chemie, The Netherlands), calcium oxalate monohydrate (weddellite), and 
carbonate apatite. Because weddellite and carbonate apatite were commercially unavailable, 
we synthesized the weddellite (12) and obtained the carbonate apatite from a collection of 
carefully selected patients' samples. The purity of carbonate apatite was checked by 
comparison of the IR spectra with the spectrum from the Hesse atlas (6) and by means of wet 
chemical analysis. 
Because the component fractions of the mixtures must add to unity (100%), the constrained 
factor space of a ternary mixture can be mapped to an equilateral triangle (Figure 1). The 
angular points of the triangle mark the single components, the edges the binary and the inside 
points the ternary mixtures. The components of each individual point in the triangle sum up to 
100%. The design for the calibrating (training) of the PLS model consisted of 25 mixture 
points. This mixture design had, except whewellite / weddellite mixtures, a uniform 
distribution for all calibration mixtures over the triangle (Figure 1A). To obtain a better 
differentiation between both calcium oxalates, we used mixtures in steps of 10% for 
whewellite and weddellite. The mixtures for library search, consisting of 46 samples, were 
prepared according to the design depicted in Figure 1B.  
 
An independent test set was formed for validation of the quality of the PLS model. This test set 
contained 9 artificial mixtures of whewellite and weddellite; 8 artificial mixtures of whewellite, 
weddellite and carbonate apatite; and 20 selected samples of urinary calculi from patients 
concerning various compositions of whewellite, weddellite and carbonate apatite. Two of these 
patients' samples contained calcium hydrogen phosphate dihydrate (brushite) or magnesium 
ammonium phosphate hexahydrate (struvite) as an extra component. 
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Figure 1. Ternary mixture designs of whewellite, weddellite, and carbonate apatite, as used for the PLS training set (A) 
and spectral library search (B). The designs are constrained factor spaces from which all component fractions add up 
to 100%. 
 
Analytical procedures 
Patients' samples were totally ground in an agate mortar. Potassium bromide (KBr Uvasol; 
Merck, The Netherlands) was pulverized, dried at 100 °C for at least 24 h and stored at 37 °C 
until use. Only 1 mg of grounded calculi material was mixed with 180 mg KBr. Pellets of 
mixtures for library search and PLS were prepared by weighing a minimum of 10 mg for the 
minor component of the mixture. W placed 100 mg of these mixtures in a 13-mm-diameter 
evacuable pellet die (Specac: Kent, England), evacuated air from the pellet die for 2 minutes, 
then formed pellets by applying a pressure of 750 MPa. The vacuum was maintained for 2 min 
after release of pressure. We used 100-mg pellets of KBr for preparation of the background 
spectra. 
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IR analysis 
Transmission spectra were recorded after automatic subtraction of background spectra with a 
Mattson Galaxy FT-IR 3020 spectrophotometer (Mattson Instruments; WI) for wavenumbers 
4000 to 400 cm–1 and spectral resolution of 4 cm–1. 
 
Data-handling procedures 
Recorded spectra were converted to absorption spectra with the First v1.52 program (Mattson 
Instruments). Firstbase v1.52 (Mattson Instruments) was used to store data from mixtures 
needed for the library. The Pearson linear or product-moment correlation coefficient (r), 
obtained from the First v1.52 program, was used as the measure of agreement between the 
unknown spectrum and the reference spectra from the library. 
To prevent storage problems, we used Firstbase to reduce recorded spectra for PLS regression 
to a spectral resolution of 16 cm–1 before storing them as ASCII data. The resulting 225 data 
points for each spectrum were collected in a matrix by means of a spreadsheet program 
(Quattro Pro v3.0, Borland International Inc., CA). This matrix of spectra, with each column of 
the spreadsheet containing the absorptions of a spectrum, was transposed to an orientation in 
rows (each spectrum in a row). This spectral matrix was imported into Unscrambler II v3.0 
(Camo A/S; Trontheim, Norway) for PLS regression, after which the concentration data of the 
calibration matrix (Y) were entered. After dividing the spectral data into a training set and a 
test set, we unified the total variance of all spectra (X) by normalizing (13) every spectrum 
with respect to its area under the curve for the selected wavenumbers. The absorbancies at 
each wavenumber of the absorption matrix X were mean centered. No scaling was carried out 
on these variables. Regression with the PLS-2 algorithm was carried out for wavenumbers 
4000 to 400 cm–1 and wavenumbers 1392 to 496 cm–1, respectively. The PLS calibration 
model relates the frequency data (X) to the concentration data (Y) through a smaller set of 
variables, the so-called latent factors, or components. Cross-validation, for estimating the 
number of these factors for an optimal PLS model with maximum explained variance, was 
carried out by inspecting the variance plot for the first local minimum (9,14). All further 
calculations for calibration and test set data were carried out with the selected number of 
factors. 
 
Statistical and validation methods. 
Calibration lines were calculated for validation of the quality of the PLS model. The predictive 
value of the PLS model was validated with the independent test set. Regression lines, as well 
as lines deviating plus or minus 10% from the regression lines, were calculated, based on 
actual and predicted values of the artificial validation samples. Uncertainty limits were 
calculated by the PLS regression program for each predicted value, as measure of the 
probability of a correct response. Compositions of patients' samples were estimated by 
comparison of unknown spectra with reference spectra from the library, followed by an 
independent visual inspection of the intensities of the bands by two specialized technicians. 
Validation was also performed by visual comparing of the spectrum from a patient's sample 
with the spectrum of an artificial sample that corresponds as well as possible to the PLS-
predicted composition of the patient's sample.  
 
RESULTS 
From the retrospective data of the past 3 years of wet chemical analysis of urinary calculi in 
our laboratory and a pilot study on IR analysis of the calculi composition, we found that 81% 
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of all urinary calculi contained calcium. The vast majority of these calculi were binary and 
ternary mixtures composed of both calcium oxalates and (or) carbonate apatite. For this reason 
the PLS model was tested with these three components. 
 
IR transmission spectra of whewellite, weddellite, and carbonate apatite showed different 
bands and intensities at different wavenumbers (Figure 2). However, intensities of 
characteristic bands of the three components in the spectral range 4000–400 cm–1 were found 
to be variable not only as to their specific composition, but also as to other factors. 
Consequently, we selected only wavenumbers 496 to 1392 cm–1 (see frame in Figure 2F) were 
selected for analysis of the three components with library search. The symmetrical CO stretch 
vibration band at 1328 cm–1 is of great significance for identification of both calcium oxalates. 
Whewellite can be distinguished from weddellite by the ratio of the CO deformation bands at 
512 and 784 cm–1. The broad bands at 592 and 626 cm–1 can also be used to distinguish 
whewellite from weddellite. The phosphate stretch vibration band at 1048 cm–1 and its shape is 
important for the identification of carbonate apatite; in addition the deformation vibration 
bands at 574 and 606 cm–1 are more or less characteristic of this compound. For quantitative 
determination of mixtures of calcium oxalate and carbonate apatite, the ratio of the 
characteristic bands at 1328 (oxalate) and 1048 (phosphate) cm–1 is important. For mixtures 
containing equal weights (50/50) of whewellite and carbonate apatite (Figure 2D) or 
weddellite and carbonate apatite (Figure 2E), the ratios of the bands are clearly different. 
Figure 2 F is an example of a spectrum from a patient's sample composed of whewellite, 
weddellite, and Carbonate apatite (25/20/55 by wt). This composition was derived as follows: 
Library search was used to determine the global composition of this sample, and then 
interpolation by means of visual inspection of the mutual band intensities and comparison with 
reference spectra established a more precise composition. 
 
Principal Component Analysis (PCA) (15), as part of the Unscrambler program, was carried 
out on the selected wavenumber range of the spectral matrix to select only those wavenumbers 
that vary as consequence of the components. This analysis selected 33 wavenumbers from 
wavenumbers 496 to 1392 cm–1 for further study. Because whewellite and weddelite have 
strongly overlapping bands and can only be distinguished by the forms and intensities of the 
bands (Figure 2, A and B), we used PLS regression to solve this multicomponent problem. 
 
Cross-validation carried out on the calibration set (see Figure 1A) with PLS determined that 
the first 2 factors explained 98.9% of the variation of the concentrations. These two factors, 
computed by a decomposition of the spectral matrix, represent the main, but hidden, systematic 
variation in the calibration data. Further calibration and prediction of the concentrations of the 
unknown samples were carried out with these two factors to prevent overdetermination of the 
outcome. Regression lines, based on the compositions of the PLS mixture design (Figure 1A) 
were calculated with the PLS-2 algorithm for whewellite, weddellite, and carbonate apatite 
(Figure 3C). The x-axis depicts the actual compositions of the components in the calibration 
set in percentage by weight, whereas the y-axis depicts the compositions predicted by the PLS 
model. 
Table 1 demonstrates a direct correspondence between the actual and PLS-predicted 
compositions for several artificial mixtures and patients' samples, for validation of the PLS 
model. Correspondence between actual and PLS-predicted composition of these independent 
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test samples is graphically depicted in Figure 4. Because compound values <10 g% (<100 
µg/g) were designated as "trace amounts" for actual compositions of some patients' samples 
(Table 1), we used 5 g% as the mean actual value for these components in Figure 4. The vast 
majority of the predicted values of the artificial mixtures show <5% deviation from the actual 
composition. Two patients' validation samples deviated slightly >10% from the calculated 
regression lines for whewellite (Figure 4A) and weddellite (Figure 4B), both depicted as a 
triangle outside the dotted lines. The "erroneously matched" samples containing brushite 
(Stone19) and struvite (Stone20) were added to the validation set to test the robustness of the 
PLS model for compositions deviating from the calibration set. The brushite-containing 
calculus deviated >10% for whewellite (Figure 4A), weddellite (Figure 4B), and carbonate 
apatite (Figure 4C), whereas the struvite-containing sample did not.  
 

 
Figure 2. Infrared transmission spectra of whewellite (A), weddellite (B), carbonate apatite (C) and equal weight 
mixtures of whewellite/carbonate apatite (D) and weddellite/carbonate apatite (E). Panel F, representing a spectrum of 
a patient's sample containing whewellite, weddellite and carbonate apatite, depicts the selected wavenumber range 
used for PLS and library search. 
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The lowest and highest uncertainty limits of the predicted values ranged from 0.8–4.0% for the 
artificial samples, 2.2–8.8% for the patients' samples, and 6.0–20.0% for the "erroneously 
matched" patients' validation samples, for all three components. 
Comparison of the transmission spectrum of the patient sample, indicated as Stone14 in Table 
1 and an artificial mixture with nearly the same composition as predicted by PLS for the 
patient's sample (23/19/58 and 25/16/59% by wt. for whewellite/weddellite/ carbonate apatite, 
respectively) demonstrates good correspondence for wavenumber range 496–1392 cm–1 
(Figure 5). The correlation coefficient between the two spectra was 0.994. 
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Figure 3. Calibration lines from whewellite (A), 
weddellite (B), and carbonate apatite (C). Actual 
values are the known mass percentages of the 
respective components of the calibration 
mixtures, whereas the predicted values are 
derived from PLS regression analysis. 
 

 Figure 4. PLS predicted compositions (y) compared 
with actual compositions (x) for artificial (●), patients' 
(▲) and "erroneously matched" patients' (■) validation 
samples for whewellite (A), weddellite (B), and 
carbonate apatite (C). Regression lines (—) and lines 
deviating plus or minus 10% (- - -) from the calculated 
regression lines are based on the artificial (●) 
validation mixtures 
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Table 1. Actual and PLS-predicted compositions (g%) of artificial mixtures and urinary calculi, for validation of the 
PLS-modela. 

 Whewellite Weddellite Carbonate apatite  Brushite Struvite 
Sample Actual Predicted Actual Predicted Actual Predicted Actual 
Mix1  18.0  17.3  82.0  84.7  0.0  -2.0   
Mix2  59.9  57.6  40.1  42.1  0.0  0.3   
Mix3  40.8  40.2  59.2  59.6  0.0  0.2   
Mix4  10.0  9.0  90.0  92.6  0.0  -1.6   
Mix5  50.6  50.2  49.4  48.2  0.0  1.6   
Mix6  27.8  25.7  72.2  75.9  0.0  -1.5   
Mix7  100.0  94.6  0.0  3.6  0.0  1.9   
Mix8  20.2  20.8  79.8  81.4  0.0  -2.2   
Mix9  63.6  63.1  36.4  37.3  0.0  -0.3   
Mix10  63.8  69.4  10.4  6.6  25.8  24.1   
Mix11  20.4  24.1  36.1  33.5  43.5  42.4   
Mix12  17.0  17.2  10.1  14.8  72.9  68.0   
Mix13  42.2  45.5  10.9  10.7  46.9  43.9   
Mix14  32.6  32.4  56.2  57.4  11.2  10.3   
Mix15  43.1  46.4  20.7  20.1  36.2  33.5   
Mix16  27.2  30.4  13.8  14.0  59.1  55.6   
Mix17  12.4  10.1  77.8  82.0  9.8  7.9   
Stone1  75.0  75.0  15.0  16.3  10.0  8.8   
Stone2  20.0  21.3  10.0  4.0  75.0  74.6   
Stone3  80.0  78.6  20.0  15.8  Traceb  5.7   
Stone4  0.0  3.3  55.0  55.0  45.0  41.7   
Stone5  90.0  89.2  10.0  5.2  Trace  5.7   
Stone6  20.0  25.1  80.0  70.3  Trace  4.6   
Stone7  Trace  -0.2  0.0  2.2  100.0  98.1   
Stone8  25.0  33.7  0.0  -3.3  75.0  69.6   
Stone9  70.0  73.0  20.0  18.9  10.0  8.1   
Stone10  40.0  45.0  10.0  6.4  50.0  48.6   
Stone11  75.0  73.9  10.0  8.3  15.0  17.9   
Stone12  70.0  56.0  30.0  33.9  Trace  10.2   
Stone13  80.0  76.2  20.0  16.3  Trace  7.6   
Stone14  25.0  23.4  20.0  18.8  55.0  57.8   
Stone15  10.0  8.0  90.0  91.1  0.0  0.9   
Stone16  60.0  56.0  40.0  37.1  Trace  7.0   
Stone17  15.0  13.4  75.0  75.7  10.0  10.8   
Stone18  50.0  43.9  50.0  46.7  Trace  9.4   
Stone19  20.0  -2.9  0.0  30.3  50.0  72.7 30.0  
Stone20  0.0  -3.0  Trace  9.9  90.0  93.1  10.0 

 a Actual are the compositions of known artificial mixtures (Mix1–Mix17) and patients' samples (Stone1–
Stone20) from which the actual compositions were estimated by library search, followed by visual inspection of 
the spectral band intensities. 
b Less than 10% 
 
DISCUSSION 
We found that deviations up to 20% from the actual quantitative compositions of the urinary 
calculi, as derived from visual inspection of spectral band intensities, can be expected after 
computerized library search. Library search is useful for the determination of the qualitative 
and the global quantitative composition of the urinary calculus, but should be followed by a 
visual inspection of the spectrum for more precise determination of the quantitative 
composition. If the urinary calculus is composed of more than 2 components, interpretation of 
the proportions of band intensities by visual inspection of the spectrum becomes rather 
complex. The ratios of oxalate (1328 cm–1) and phosphate (1048 cm–1) are quite different for 
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equal mixtures of whewellite and carbonate apatite (figure 2D) in comparison with weddellite 
and carbonate apatite (Figure 2E). Expert knowledge is needed to interpret the ratios of the 
relevant spectral bands for ternary mixtures composed of whewellite, weddellite, and 
carbonate apatite (Figure 2F). In our opinion it would for this reason be virtually impossible to 
build an expert system for routine quantification of urinary calculus composition, consisting of 
many binary and ternary mixtures in various proportions of >20 components. 
 

 
Figure 5. Transmission spectrum of a patient sample (A) containing a PLS-predicted composition of whewellite, 
weddellite, and carbonate apatite (23/19/58, by wt.) and a spectrum of an artificial mixture (B) with nearly the same 
composition (25/16/59, respectively) as the patient's sample. 
 
 
It is important for PLS regression, as well as library search, to remove wavenumbers with no 
structural information as well as spectral bands that are variable because of factors other than 
the components themselves. We found that five factors were needed to explain all systematic 
variation with PLS regression from the fully normalized spectrum from 400 to 4000 cm–1 (data 
not shown). The calibration lines calculated from the full spectrum were very good. However, 
with these 5 factors a very disappointing outcome of the validation samples was obtained, as a 
result of serious over-determination of the PLS model. For reliable results, selection of the 
appropriate wavenumbers is apparently needed. 
The regression lines in Figure 3 demonstrate that PLS regression, with two factors obtained 
from the selected wavenumber range, gave most satisfactory results for carbonate apatite. An 
even better impression of the reliability of the PLS model can be obtained from the results of 
the independent validation samples, both artificial mixtures and renal stones. The results from 
Table 1 as well as the regression lines with their 10% deviation lines in Figure 4, demonstrate 
that PLS regression is very useful for the determination of the quantitative composition. Only 
two artificial mixtures had predicted values of whewellite that deviated >5%, but still <6% 
from the actual composition (MIX7 and MIX10 in Table 1). Predicted values of all other 
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components of the artificial mixtures deviated by <5%. The PLS predicted compositions of the 
patients' samples showed that only two of the samples deviated slightly by >10% from the 
actual compositions, as determined by visual inspection of the spectrum. The brushite-
containing validation sample demonstrates that qualitative compositions dissimilar to the 
calibration set result in serious deviations from the actual compositions for all components. 
The struvite-containing calculus did not show these deviations, which can be explained by its 
low concentration (10% by wt.) and its spectral similarity with carbonate apatite. From these 
findings it can be concluded that prediction of the composition of unknown samples with PLS 
regression should be carried out only for qualitative compositions similar to the calibration set. 
The uncertainty limit of the predicted value, as provided by PLS regression, is a measure of 
degree of certainty of the match and provides some measure of probability of a correct 
response. Uncertainty limits <4% for the artificial and 8.8% for the patients' validation samples 
are good enough for routine analysis of urinary calculus composition, with PLS regression. 
The brushite- and struvite-containing calculi had a low probability of a correct response, as 
found by their high uncertainty limits.  
Practical use of PLS regression in the laboratory is still hampered by the fact that many steps – 
e.g., data reduction by decreasing spectral resolution, wavenumber selection and normalization 
of the selected wavenumbers – should be carried out before the actual PLS regression, if one is 
to obtain reliable results for the unknown urinary calculus composition. At present many 
different programs must be used to achieve that purpose. Manufacturers of spectroscopic 
software may want to reduce these manipulations by making software available in one 
program, including the PLS-1 and PLS-2 algorithm. 
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ABSTRACT 
Infrared (IR) spectroscopy is used to analyze urinary calculus (renal stone) constituents. 
However, interpretation of IR spectra for quantifying urinary calculus constituents in mixtures 
is difficult, requiring expert knowledge by trained technicians. In our laboratory IR spectra of 
unknown calculi are compared with reference spectra by means of a computerized library 
search of 235 reference spectra from various mixtures of constituents in different proportions, 
followed by visual interpretation of band intensities for more precise semiquantitative 
determination of the composition. To minimize the need for this last step, we tested artificial 
neural network models for detecting the most frequently occurring compositions of urinary 
calculi. Using constrained mixture designs, we prepared various samples containing 
ammonium hydrogen urate, brushite, carbonate apatite, cystine, struvite, uric acid, weddellite, 
and whewellite for use as a training set. We assayed known artificial mixtures as well as 
selected patients' samples from which the semiquantitative compositions were determined by 
computerized library search followed by visual interpretation. Neural network analysis was 
more accurate than the library search and required less expert knowledge because careful 
visual inspection of the band intensities could be omitted. We conclude that neural networks 
are promising tools for routine quantification of urinary calculus compositions and for other 
related types of analyses in the clinical laboratory. 
 
 
INTRODUCTION 
Fourier-transform infrared (IR) analysis is a reliable method for qualitative and quantitative 
assessment of urinary calculus composition of patients with urolithiasis (1). However, complex 
IR spectra from stone components in different combinations and proportions require expert 
interpretation. Different schemes have been developed for objective qualitative analysis of 
spectra of calculi (2;3). For semiquantitative prediction of components analyzed with IR, most 
spectrophotometers are accompanied by software packages for computer library searches. 
Quantification of calculus compositions analyzed by IR can be performed with methods such 
as factor analysis (4) and partial least-squares (PLS) regression (5). When the Lambert–Beer 
Law holds, PLS is a reliable method for analyzing spectroscopic data from the urinary calculus 
(5). However, PLS regression can be subject to serious nonlinearities, such as are sometimes 
observed in spectroscopic data from multicomponent mixtures. Lack of on-line data handling-
facilities before the data are quantified by PLS regression restricts the practical use of this 
approach in routine laboratories. 
Artificial neural networks, which are less subject to these limitations, are simple computer 
programs, for which the working concept is partly derived from the mechanism of action of the 
brain. The principal property of artificial neural networks is association and learning from 
examples with linear and nonlinear data structures; their power is pattern recognition and 
prediction. Recently, neural networks have been applied to evaluations of clinical laboratory 
data (6-9). Artificial neural networks consist of one input layer, one or more hidden layers, and 
one output layer (Fig. 1). Each layer consists of one or more elements (“neurons”) that are 
connected to all elements of the next layer. These neurons are simple computational devices 
that receive one or more input signals. Most neural network programs can change the network 
structure (topology) by varying the number of neurons in all or some of the defined layers, if 
desired, before training. 
The network is trained by presenting it with an extensive set of training samples that contain 
both input values and their actual outcomes. Given a certain network topology, the learning or 
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training phase involves the modification of the connection strengths (weights) between the 
neurons of the succeeding layers. These weights are values representing the stimulating or 
inhibiting influence of an input signal. Initially the weight factors are randomly chosen. The 
weight adaptations during training are intended to reduce the error between the network 
outcome and the required outcome of the presented training signal. To obtain this error 
reduction, the artificial neurons of the hidden and the output layer compute a weighted sum of 
all their inputs; the outcomes of the weighted additions are passed to a differentiable transfer 
function, which is mostly sigmoid or linear.  

 
Figure 1. Simplified scheme of an artificial neural network with three layers for estimating the composition of a 
mixture containing components A, B, and C, from e.g. an absorption spectrum; in this case the absorbances are 
presented to the input layer. 

 
After feeding the input data forward through the network during training, the results of all 
calculations at the output neurons are compared with the required outcome. If the difference 
between the required and calculated outcome is greater than a predefined tolerance, the weight 
factors are adjusted by means of the back-propagation learning rule (10). After all training data 
have been presented to the network in one pass, the process (feed forward, error calculation, 
and back propagation), is repeated until use of all the input data produces the desired output 
within the predefined tolerance. The procedure results in a combination of weight factors, 
which are used for a fast calculation of the unknown outcome. Before the network is used for 
prediction of unknown sample compositions, the network performance should be validated by 
analyzing a separate group of samples with known compositions that were not used for 
training.  
In a sense, artificial neural networks extract their own models from the data. IR spectra from 
urinary calculi composed of several constituents sometimes have data that depart from the 
Lambert–Beer Law, which is based on a linear relation of the absorption with the 
concentration. Artificial neural networks are especially useful for the extraction of quantitative 
information from data with nonlinear structures. Therefore, we evaluated the use of an artificial 
neural network for quantifying eight commonly occurring components of urinary calculi.  
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MATERIALS AND METHODS 
Samples 
The network was trained on mixtures of ammonium hydrogen urate, calcium hydrogen 
phosphate dihydrate (brushite; Riedel-de-Haën, Hannover, Germany), carbonate apatite, 
cystine (Sigma, Brunschwig Chemie, Amsterdam, The Netherlands), magnesium ammonium 
phosphate hexahydrate (struvite; Riedel-de-Haën), uric acid (Sigma), calcium oxalate 
monohydrate (weddellite) and calcium oxalate dihydrate (whewellite; BDH, Brunschwig 
Chemie, Amsterdam, The Netherlands). Ammonium hydrogen urate, weddellite, and carbonate 
apatite were not commercially available, so we synthesized ammonium hydrogen urate 
(according to a protocol from Hesse A. Hesse, Germany) and weddellite (11) and obtained 
carbonate apatite from a collection of carefully selected patients' samples. The purity of the 
carbonate apatite was examined by comparing the IR spectrum with the spectrum from the 
Hesse atlas (3) and by standard chemical analysis. 
For network training, we prepared 160 binary and ternary mixtures containing the eight most 
commonly occurring urinary calculus components. To test the quality of the neural network 
during training, we prepared an independent test set of 57 artificial mixtures of the same 
components as the training set. 
For use in validating the quality of the network after training, an independent validation set 
was formed from 36 selected samples of patients' urinary calculi containing various 
compositions of the described components. The compositions of the patients' samples were 
estimated by comparing the spectra of the unknown calculi with reference spectra from a 
computer library, and independent visual inspection of the intensities of the bands by two 
specialized technicians. To test the deportment of the neural network for components not 
available in the training set, we included in the 36 patients' samples 3 that contained uric acid 
dihydrate, amorphous calcium phosphate, and chloramphenicol as an additional, or sole 
component.  
Details of preparation of the mixtures, analytical procedures, and IR analysis are described 
elsewhere (5). 
 
Data Preprocessing 
The recorded IR spectra, with wavenumbers of 4000–400 cm–1 and a spectral resolution of 16 
cm–1, were stored as ASCII data in a personal computer. Matrices were formed from all 
training, test, and patients' spectral data. Every row of a matrix contained the normalized 
spectral data for a continuous set of selected wavenumbers. Concentration data (percent of 
total weight) for the training and artificial test sets were added to the end of each row. 
Normalization (12) was done by unifying the total variance of every spectrum for the selected 
wavenumbers with regard to its area under the curve.  
 
Neural Network Topology 
The neural network software package was written in Turbo C (Borland International, Scotts 
Valley, CA) with reference to a program listing (13). For quantitative analysis, the 
Chemometric Research Group of the University Centre of Pharmacy in Groningen extensively 
modified this program. An IBM compatible 80486DX (33 MHz) personal computer was used 
to run the program.  
The training set was used to obtain a trained network, which has a mapping (topology) suitable 
for analysis of as many as eight components in unknown samples. The number of units of the 
input layer was equal to the number of selected wavenumbers (n = 91). Eight output neurons 
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were used, one for each component used in the training set. Sigmoid neurons were used for the 
hidden layers, linear neurons for the output layer (13). There were no direct connections 
between the input and output layer. Input patterns were scaled between 0 and 1 for the 
absorbance data and between –1 and +1 for the concentration data.  
If too much noise is present in the patterns, the model might overfit the data as a consequence 
of the nonlinear behavior of the sigmoid transfer function. In that case, the network will store 
the individual patterns instead of the important underlying features. With oversized networks, 
excessive training also will lead to overfitting of the training data. Therefore, to optimize 
(minimize) the number of hidden layers and their neurons, we monitored the outcome of the 
independent test set. 
The absorbances of each spectral wavenumber were simultaneously presented to the units of 
the input layer, one spectrum at a time. At the same time, the corresponding target values were 
presented to the neurons of the output layer. After each training pattern was presented to the 
network in the feed-forward step this way, the differences between the predicted output and the 
correct or real values of the output were calculated. These differences were then used to update 
the weights in the back-propagation step of the training process. Differences between the 
required and predicted output were expressed as mean square error for the back-propagation 
learning rule (10;14;15). The whole process, in which all training patterns are presented to the 
network for updating the weights, is called one epoch or iteration. To allow better comparison 
with actual component concentrations, we used the square root of the mean square error 
(RMSE) as program output. The learning rates for back-propagation were chosen so as to 
provide the shortest training time, thereby preventing any oscillation (15). The momentum, 
another convergence-improving back-propagation parameter, was always set to zero. 
 
Statistical and Validation Methods 
A major goal of artificial neural network development is a trained network that generalizes 
well. Generalization is the capability of the neural network to recognize unknown patterns that 
are similar, but not identical, to the training input patterns. Current literature presents many 
modifications to back-propagation algorithms to enhance the generalizing capabilities of neural 
networks (8;15). We used plots with RMSE as a function of the number of epochs for both 
training and test data for monitoring the network performance during training. The test set was 
not exposed to the training process itself (adjustment of the weights), but rather was used to 
monitor training performance during training. The neural network has good generalizing 
capabilities when the RMSE decreases monotonically with the number of epochs, for both 
training and artificial test data. If the convergence of both curves was poor, a different network 
mapping was used. The choice of the final network topology was based on monitoring the 
network performance with the test patterns during training. The number of epochs that 
produced the minimum RMSE value of the artificial test data was used to predict the 
composition of the unknown samples. Generalization properties of the artificial neural network 
were also validated by means of scatter plots and correlation lines, based on actual and 
predicted values of the artificial test samples. 
The predictive value of the network, after final training, was tested by comparative evaluation 
of the 36 patients' samples whose compositions had been estimated with library search. The 
predictive value of the network was also evaluated by visual comparison of the spectrum from 
a patient’s sample with the spectrum of an artificial sample that had been prepared according 
to the neural network-predicted composition of the patient’s sample. 
 



Chapter 5 
 

 
138 

RESULTS 
In a previous study (5) we found that intensities of characteristic bands from 4000–400 cm–1 

varied not only according to the specific composition but also to other factors. Consequently, 
we used only a continuous range of wavenumbers between 1936 and 400 cm–1, which 
contained the bands most important for component identification. Normalization was carried 
with this wavenumber range also.  
The minimum network size was figured out first: Network reduction to one hidden layer gave 
no loss of learning ability. The number of neurons of the hidden layer was then reduced. Once 
the optimum was found, we varied the scaling factors for in- and output and the learning rate. 
Selection of the optimal topology was based on monitoring plots, with RMSE as a function of 
the number of epochs, for both training and test data during training. Criteria for selection 
were: a minimum divergence of both curves, and the lowest value for RMSE of the test data. 
The optimal network topology we obtained had eight hidden neurons, input scaling between 
1.0 and 0.0, output scaling between 0.6 and 0.4, and a learning rate of 0.1. With this final 
network topology, 15000 epochs were needed to reach an RMSE of 1.842 for the training data 
and 3.471 for the artificial test data (Fig. 2).  
 

 

Figure 2. Determination of the minimum number of epochs for the training and test sets, predicted with the 
network. 

Correlation between the actual and network-predicted composition of the artificial test 
samples used for monitoring the network performance during training is depicted in Fig. 3. 
The eight components in these samples were: ammonium hydrogen urate, brushite, 
carbonate apatite, cystine, struvite, uric acid, weddellite, and whewellite.  
 

The majority of the predicted values of the artificial mixtures deviated <5% from the actual 
composition. Of 57 artificial test samples, 7 had predicted values deviating slightly >10% from 
the actual composition: 5 for weddellite and 2 for whewellite. 
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As shown in Fig. 4 the absorption spectra of a patient's sample (sample 33 in Table 1) and an 
artificial mixture with nearly the same composition as predicted by the network for the patient's 
sample (65:10:20:5 by wt. for ammonium hydrogen urate:uric acid:weddellite:whewellite) 
demonstrates good correspondence for wavenumber range 400–2000 cm–1 (Fig. 4). The 
correlation coefficient between the two spectra was 0.991. 
Table 1 shows close correspondence between the actual (estimated) and neural network-
predicted compositions for most of the patients' samples used for validation of the network 
model after training. All samples had compositions that are commonly found in biological 
samples, although not at the frequency of occurrence listed in the Table. Retrospective data on 
IR analyses of urinary calculi compositions in our laboratory indicated that ~80% of all urinary 
calculi contained calcium. The vast majority of these calculi were binary and ternary mixtures 
composed of both calcium oxalates and (or) carbonate apatite.  
 

The majority of the predicted values of the patients' mixtures show ≤10% deviation from the 
library search estimated composition. Sample 15 had different estimates for carbonate apatite 
and struvite, and sample 31 had different estimates for the calcium oxalates weddellite and 
whewellite. The “erroneously matched” specimen samples 34, 35, and 36 were added to the 
validation set to test the robustness of the network model for compositions that are wholly or 
partly absent from the training set. The neural network calculated 80% uric acid and 10% 
ammonium hydrogen urate for the uric acid/uric acid dihydrate containing calculus, and 90% 
carbonate apatite for the amorphous calcium phosphate/carbonate apatite-containing calculus. 
A serious mismatch was proposed for the chloramphenicol-containing calculus (sample 36).  
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Figure 3. Validation plots for the test set, predicted by the network: A, ammonium hydrogen urate; B carbonate 
apatite; C, struvite; D, weddellite; E, brushite; F, cystine; G, uric acid; H, whewellite.    
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Figure 4. Absorption spectrum of a patient's sample (no. 33 in Table 1) and a spectrum of an artificial mixture with the 
same composition as predicted for the patient's sample. 
The network prediction of the patient's sample was ammonium hydrogen urate:uric acid:weddellite:whewellite 
(65:10:20:5, by wt.). 
 
DISCUSSION 
Computerized library searches are useful for routine determinations of the qualitative and 
global quantitative composition of urinary calculi. However, a visual inspection of the 
spectrum for more precise determination of the quantitative composition is also required. If the 
urinary calculus is composed of more than two components, interpretation of the proportions 
of band intensities by visual inspection of the spectrum becomes more complex. In a previous 
study (5) we found PLS regression to be reliable for quantifying a mixture of carbonate apatite, 
weddellite, and whewellite. For these components, almost equal errors were obtained with the 
PLS (RMSE = 1.7) and neural network model (RMSE = 1.6) for the same artificial test data. 
Removal of wavenumbers that contributed no structural information was important for 
obtaining trained networks that could produce generalizable results for unknown samples, after 
neural network training. The criterion for a correct mapping is thought to be a similar 
performance on training and test data, i.e., the same order of RMSE and the same trend. If the 
resulting errors follow the same trend, one can safely assume that the underlying features of the 
patterns are learned and not merely specific features of the training set. Therefore, one can 
expect good predictions for new patterns. We found monotonically decreasing curves and 
minimum divergence between the curves of training and test data (Fig. 2). Consequently, we 
obtained generalizable results for the patients' validation data (Table 1) with the final network 
topology that was sufficiently trained after 15000 epochs. 
The scatter plots in Fig. 3, representing the correlations between actual compositions and 
network-calculated compositions of the test samples, show that the network model yielded 
reliable results for these samples. Only 7 of 57 artificial mixtures had network-predicted values 
for whewellite or weddellite that deviated slightly >10% than the actual composition. 
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As shown in Table 1, the network-predicted compositions for the patients' samples deviated by 
slightly >10% from the actual composition, found by visual inspection of the spectrum, for 
only two samples (samples 15 and 31). Of course one should keep in mind that the “actual” 
compositions of patients' samples used for network validation are estimations also. 
 
Table 1. Comparison of actual and network-predicted urinary calculus compositions for 
validation of the neural network modela  

Sample AMUR  BRUS CARB CYST STRU URIC WEDD WHEW 

1 20, 10 80, 90  
2             20, 20 80, 80 
3             85, 75 15, 25 
4     100, 95       0, 5 
5     40, 40       60, 60 
6     70, 75       10, 10 20, 15 
7      30, 30       40, 40 30, 30 
8      65, 70       5, 5 30, 25 
9      15, 15       20, 15 65, 75 
10     5, 5       30, 20 65, 75 
11     5,  5       15, 15 80, 80 
12     60, 60       10, 10 30, 30 
13     90, 95   5, 5     5, 0 
14     80, 80   15, 15   5, 5 
15     85, 70   10, 25   5, 5  
16     80, 90   20, 10 
17     95, 95   5, 5 
18      50, 55   50, 45 
19     65, 75   35, 25 
20     55, 60   45, 40 
21     5, 5     80, 80 5, 10 10, 5 
22           50, 65 20, 10 30, 25 
23           30, 30 10, 5 60, 55 
24   20, 20 80, 80 
25   90, 90 10, 10 
26   50, 45 50, 55 
27   30, 20 70, 80 
28   40, 40 50, 50       10, 10 
29   55, 55 35, 35       10, 10 
30   40, 40 45, 45       15, 15 
31   70, 65         0, 20 30, 15 
32   40, 45   30, 40   30, 15 
33 65, 65         10, 10 15, 20 10, 5 
34b   10          80  10 
35       90        5  5 
36       40  40      140 –120 
a
 When two results are listed, the first is the composition estimated by library search plus visual inspection of the band intensities; the 

second is the network-predicted value. 
b
 Sample 34 was composed of uric acid and uric acid dihydrate (50:50 by wt.), sample 35 of amorphous calcium phosphate and carbonate 

apatite (80:20 by wt.) and sample 36 of chloramphenicol (100%). 
AMUR, ammonium hydrogen urate; BRUS, brushite; CARB, carbonate apatite; CYST, cystine; STRUV, struvite; URIC, uric acid; 
WEDD, weddellite; WHEW, whewellite. 
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The chloramphenicol-containing sample (no. 36) demonstrates that qualitative compositions 
unrelated to those in the training set can result in serious deviations from the actual 
compositions for some or all components. Its calculated contents — carbonate apatite, cystine, 
weddellite, and whewellite, 40:40:140(!): –120(!) by wt. — were nonsensical, despite the fact 
that they sum to 100%. For the patient's sample containing uric acid dihydrate (no. 34) the 
results were not so disparate (calculated contents of uric acid and ammonium hydrogen urate 
80:20 by wt.), because of the spectral similarity of uric acid dihydrate to these components. 
The same is true for the amorphous calcium phosphate-containing sample (no. 35) because of 
its spectral similarity to carbonate apatite. We therefore conclude that prediction of 
compositions of unknown samples with artificial neural networks should be considered with 
great care when compositions are greatly dissimilar from the training set. Apparently, it is 
necessary to add some simple expert rules after completion of the neural network calculation 
of the unknown samples.  
The results in Table 1 and the scatter plots in Fig. 3 show that artificial neural networks can be 
useful for routine determination of quantitative urinary calculus compositions. However, the 
training of artificial neural networks is hampered by the fact that many variables must be 
optimized manually to obtain networks that generalize well. The time for one complete 
training session can also be considerable. Training sessions for the network (i.e., 15000 
epochs) were ~24 h. Some batch-type system for unattended operation, by which processing 
parameters are changed automatically after each training session, is strongly recommended. 
However, once reliable networks have been obtained, prediction of unknown sample 
compositions takes only a few seconds. 
Almost all urinary calculi contain no more than three components. If the identity of the urinary 
calculus components is known beforehand, slightly better results can be obtained by using a 
network that has been trained only with the components of interest. However, for analysis of 
urinary calculi, the gain in accuracy obtained by using such networks over that for the network 
trained with the eight components is negligible (data not shown). 
 
We conclude that prediction of quantitative urinary calculus compositions by artificial neural 
networks is of practical use in clinical laboratories. Other multivariate calibration methods, 
e.g., PLS, can be successfully applied (5), but these require different steps of data 
preprocessing. Consequently, these multivariate calibration methods are mostly available only 
in commercial programs with limited or no preprocessing possibilities. Therefore, we are now 
engaged in preparing software that will make available in one program data preprocessing, 
neural network processing, and some simple expert rules for the prediction of urinary calculus 
compositions analyzed with IR. 
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ABSTRACT  
Background: Preparation of KBr tablets, used for Fourier infrared (FT-IR) analysis of 
urinary calculus composition, is time-consuming and often hampered by pellet breakage. 
Therefore, we developed a new FT-IR method for urinary calculus analysis. This method 
makes use of a Golden Gate Single Refection Diamond Attenuated Total Reflection sample 
holder, a computer library, and an artificial neural network (ANN) for spectral 
interpretation. 
Methods: The library was prepared from 25 pure components and 236 binary and ternary 
mixtures of the 8 most commonly occurring components. The ANN was trained and 
validated with 248 similar mixtures and tested with 92 patient samples, respectively. 
Results: The optimum ANN model yielded root mean square errors of 1.5% and 2.3% for 
the training and validation sets, respectively. Fourteen simple expert rules were added to 
correct systematic network inaccuracies. Results of 92 consecutive patient samples were 
compared with those of a FT-IR method with KBr tablets based on an initial computerized 
library search followed by visual inspection. The bias was significantly different from zero 
for brushite (–0.8%) and the concomitantly occurring whewellite (–2.8%) and weddellite 
(3.8%), but not for ammonium hydrogen urate (–0.1%), carbonate apatite (0.5%), cystine 
(0.0%), struvite (0.4%), and uric acid (–0.1%). The 95% level of agreement of all results 
amounted to 9%.  
Conclusions: The new Golden Gate method is superior because of its smaller sample size, 
user-friendliness, robustness and speed. Expert knowledge for spectral interpretation is 
minimized by the combination of library search and ANN prediction, but visual inspection 
remains necessary. 
 
 

INTRODUCTION 
Therapy to prevent urinary calculi recurrence requires quantitative estimates of of the 
composition of urinary calculi. Extracorporal shock wave lithotripsy, now widely used for 
removal of urinary calculi, necessitates the use of laboratory techniques that allow 
component identification in minute amounts of material. Traditional wet chemistry 
techniques, x-ray diffraction and infrared (IR) spectroscopy are the current analytical 
methods. Of these, wet chemical analysis is rather inaccurate and imprecise (1) and requires 
relatively large amounts of sample. X-ray diffraction is suitable for quantification of 
mineral containing samples, such as urinary calculi (2), but it cannot adequately detect 
amorphous substances, such as carbonate apatite or dahlite (3). Infrared (IR) spectroscopy 
has been applied in clinical chemistry for analyses of biofluids and solid biosamples (4). 
This technique often produces complex spectra with contributions from a sizeable number 
of unknown interfering substances when applied to authentic biological material. Analyses 
of these complex spectra is facilitated by the use of chemometrics (5), which is a generic 
term for the application of expert systems, neural networks, and other mathematical and 
statistical methods.  
 
Fourier transform infrared (FT-IR) spectroscopy has become a standard technique for 
urinary calculus analysis. FT-IR makes use of a diversity of sample holders, such as 
photoacoustic detection (6), diffuse reflectance FT-IR (DRIFT) (7), and KBr tablet 
transmission (8;9). For the routine visual interpretation of urinary calculus IR spectra, 
Hesse et al. (10) have issued an atlas with IR spectra from pure urinary calculus 
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components and their mixtures, all embedded in KBr tablets. Another, less time-consuming 
option is computerized analyses based on library search [e.g. SEARCH (11) and LITHOS 
(2)], expert rules [CIRCOM (12), STONES (9)] or other chemometrical techniques like 
partial least-squares (PLS) regression (13) and artificial neural networks (ANNs) (14).  
 
IR spectroscopy using KBr tablets is the current method for analysis of urinary calculus 
compositions in our laboratory. The preparation of KBr tablets is time-consuming and often 
hampered by pellet breakage. To overcome these drawbacks, we developed a new IR 
method, using a Golden Gate Single Refection Diamond Attenuated Total Reflection 
(ATR) device. This method makes use of authentic sample material without any sample 
pretreatment. The results of the Golden Gate assay were quantified by a program dedicated 
for the prediction of the outcome of urinary calculus composition analyses. The new 
method was validated by comparing the results with those obtained with the IR assay with 
KBr tablets. The quantitative results from this KBr method were estimated from the IR 
spectra by the use of an initial computerized library search and followed by visual 
inspection of the spectra. 
 

MATERIALS AND METHODS 
Samples 
Samples for the library of the Golden Gate NEURANET (GGN) method 
For the construction of a library for the GGN method, we prepared IR spectra of 25, mostly 
commercially available, components (Table 1) and 236 mixtures. Usually, no more than 
three components can be detected in one patient sample. The majority of all urinary calculi 
contain one or more (maximum, three) of the eight most commonly occurring components. 
Therefore, the 236 mixtures were prepared from these commonly occurring urinary calculi 
components. The components are as follows: ammonium hydrogen urate (AMUR), brushite 
(BRUSH), carbonate apatite (CARB), cystine (CYST), stuvite (STRUV), uric acid (URIC), 
weddellite (WEDD), and whewellite (WHEW; Table 1). The mixtures were restricted to 
binary and ternary mixture designs. These, so-called constrained and balanced, mixtures 
were prepared in linear ranges of 0–100% with step sizes of 10%. A more detailed 
description of the preparation of these mixtures can be found elsewhere (13). AMUR was 
synthesized according to the following brief instructions: 1.68 g of uric acid was suspended 
in 500 mL water of 37 °C. A 30 g/L ammonia solution was added drop by drop (2 drops/s) 
until the solution was completely clear. After the solution cooled, the water layer was 
aspirated. The crystals were subsequently rinsed with water and diethyl ether and dried at 
100 °C. With this synthesis, ~0.84 g AMUR can be obtained, which remains stable for ~6 
months. 
CARB and WEDD were obtained from patient samples by a selection based on purity. 
Purity was established by comparison of IR spectra with those in the Hesse atlas (10) and 
by standard wet chemical analysis. All mixtures were carefully mixed using a pestle and 
mortar. 
 
Samples for training and validation of the neural network of the GGN method 
For the development of the neural network, the previously mentioned 236 library mixtures 
and pure samples of the 8 commonly occurring components were used. Two additional 
mixtures were added to the set, giving a total number of 248 mixtures. The two extra 
mixtures were added to make the validation set more representative. 
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Patient samples for comparison of the KBR and GGN methods  
One hundred consecutively collected urinary calculus samples from 70 males (median age, 
56.5 years; range 5–75 years) and 30 females (median age, 49 years; range 21–74 years) 
served for testing the predictive performance of the new GGN method. The majority of 
them (>95%) were derived from patients treated with extracorporeal shock wave 
lithotripsy. Before analysis, the whole patient sample was carefully ground using a pestle 
and mortar. The quantitative compositions each sample was also obtained from the KBr 
method, using computerized library search followed by visual inspection of the spectrum. 
The samples were considered a representative selection of urinary calculi in our routine 
practice. The composition of the calculi will be described in greater detail in the Results 
section.  
 
Table 1. Compounds used for the development of the GGN method 

Component name Abbreviationa,b Sourcec 

2,8-dihydroxy adenine  Sigma, Sigma-Aldrich Chemie (Zwijndrecht) 

Albumin (human)  Patient 

Aammonium hydrogen urate AMUR Synthesized 

Amorphous calcium phosphate  Patient 

Bilirubin  Merck, Fisher Scientific (Den Bosch) 

Blood clot  Patient 

Bovine albumin  Sigma, Sigma-Aldrich Chemie (Zwijndrecht) 

Brushite BRUS Fluka Chemika, Sigma-Aldrich Chemie (Zwijndrecht) 

Calcite  Fluka Chemika, Sigma-Aldrich Chemie (Zwijndrecht) 

Carbonate apatite CARB Patient 

Cholesterol  Merck, Fisher Scientific (Den Bosch) 

Cystine CYST Sigma, Sigma-Aldrich Chemie (Zwijndrecht) 

Fatty substance  Patient 

Gypsum  Merck, Fisher Scientific (Den Bosch) 

Hydroxyl apatite  Fluka Chemika, Sigma-Aldrich Chemie (Zwijndrecht) 

Monetite  Merck, Fisher Scientific (Den Bosch) 

Newberyite  Fluka Chemika, Sigma-Aldrich Chemie (Zwijndrecht) 

Palmitic acid   Fisher Scientific ( Den Bosch) 

Quartz  Fluka Chemika, Sigma-Aldrich Chemie, Zwijndrecht) 

Sodium-hydrogen urate  Sigma, Sigma-Aldrich Chemie (Zwijndrecht) 

Struvite STRUV Riedel de Haën, Sigma-Aldrich Chemie (Zwijndrecht) 

Uric acid URIC Fluka Chemika, Sigma-Aldrich Chemie (Zwijndrecht) 

Weddellite WEDD Patient 

Whewellite WHEW Fluka Chemika, Sigma-Aldrich Chemie (Zwijndrecht) 

Xantine  Fluka Chemika, Sigma-Aldrich Chemie (Zwijndrecht) 
a Components with an abbreviation are used for neural network processing. 
b The eight most commonly occurring components 
c All source located in the Netherlands 
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Analytical Methods 
Standardization 
Before each series, we validated the FT-IR instrument by measurement of a polystyrene 
transmission standard. Validation comprised wave number positions and absorbancies of 
known IR bands. The linearity of IR analyses of the KBr and Golden Gate assays was 
tested using a dilution series of URIC at concentrations of 0–100% with step sizes of 10%. 
URIC was diluted with WHEW, and the area of the URIC band at 1120 cm–1 served for 
establishment of test linearity. The “runs-test” was used for establishment of significant 
deviations from a straight-line (15). P ≤0.05 was considered statistically different. 
 
KBr method 
Pulverized urinary calculus (1.5 mg) was mixed with 180 mg KBr with a pestle and mortar. 
From this mixture, 100 mg was taken for the preparation of a urinary calculus KBR-tablet 
at 109 Pa pressure under vacuum for 2 minutes. A more extensive description can be found 
in the Hesse atlas (10). The spectra were scanned in the mid-infrared region from 4000–400 
cm–1 at 4 cm–1 wave number intervals in a Bio-Rad FTS 135 spectrometer equipped with a 
cooled DTGS detector and Win-IR (Ver. 3.04) software (both from Bio-Rad Laboratories 
Inc., Spectroscopic Division). A 100- mg KBr-tablet was used as a blank for background 
subtraction. Samples producing weak spectra (absolute difference between absorbance 
maximum and minimum less than A=0.25) were reanalyzed using tablets with higher 
sample:KBr ratios.  
The quantitative composition of each sample was estimated by comparison of the recorded 
spectra with KBr reference spectra that were stored in a computer library (LITHOS; Bio-
Rad). This library contains data of pure components of urinary calculi and 227 mixtures. Its 
content was similar to a LITHOS library that is used for x-ray diffraction. Win-IR search 
(Ver. 1.03;  Bio-Rad Laboratories Inc., Sadtler Division) served as search engine. This 
search engine applies the Euclidean distance-matching algorithm to the finger print area 
(2000–400 cm–1) of the absorbance spectra to obtain a spectral hit list. Additional 
evaluation and interpolation led to an estimate of the quantitative composition of a sample, 
since the first hit is not necessarily the correct one and because even large libraries cannot 
contain full detail. After the library search, the final composition was obtained by visual 
inspection of spectral band intensities by two experienced technicians blinded to the results 
of the Golden Gate method. 
 
General outline of the GGN method 
The so-called Golden Gate is a sample-holding device equipped with a Single Reflection 
Diamond ATR crystal (Graseby Specac) for measurement of micro samples. The standard 
ZnSe lens was replaced with a KSR5 lens to enable measurements between 600–250 cm–1. 
Carefully pulverized material (1-2 mg) was applied to the flat surface of the diamond 
crystal and pressurized at 3 x 108 Pa. The reproducibility of this pressure was guaranteed by 
using the build-in pressure restraint of the pressure applicator of the Golden Gate device. 
The active sampling area of the crystal was 1.13 mm2 (diameter 0.6 mm). The uniformity of 
the crystal spreading on the sensing area was controlled by viewing through the looking 
glass of the pressure applicator of the Golden Gate device. The samples were always 
measured at room temperature. A Bio-Rad FTS 135 spectrometer, equipped with a cooled 
DTGS detector and Win-IR software, was used for scanning in the mid-infrared region 
from 4000–400 cm–1 at 4 cm–1 wave number intervals. An empty crystal served for 
background measurement and blank subtraction. The background spectra were always 
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collected before a series of 10 sample spectra. All training, validation, and test samples 
were measured in a more or less random order over ~6 months. Each spectrum was 
acquired by coaddition and averaging of 16 interferograms. The Golden Gate crystal was 
cleaned with water and 960 mL/L alcohol after each measurement. 
The NEURANET program (Ver. 3.0; Bio-Rad Laboratories Inc., Spectroscopic Division) 
was used for quantification of urinary calculi, whose compositions are expressed as mass 
percentage. The selection of this program was based on earlier studies (13;14). This 
program contains two supplementary quantification methods and was particularly 
developed for interpretation of IR spectra of urinary calculi in the range of 4000–400 cm–1. 
The first method is computerized library search, and the second is based on artificial neural 
network prediction. Library search can be used for quantification of any composition of a 
calculus, assuming that the components are available at the library. The neural network may 
be used for more accurate predictions of compositions of urinary calculi, but is restricted to 
process the outcomes of a maximum of 10 components simultaneously. Therefore, the 
neural network can only be used for quantification of the most commonly occurring 
components of urinary calculi. For calculi composed of these commonly occurring 
components, both quantification methods should provide almost the same outcome. In this 
case, the library search serves as a verification method of the ANN because it can depict the 
unknown spectrum graphically together with a number of the library spectra (stacked, or 
overlaid). For rarely occurring components, the results obtained with library search must be 
used. The availability of both quantification methods facilitates the interpretation process. 
Additionally, the program offers the possibility of adding some simple expert rules to the 
network-predicted results. These rules may be added to solve problems caused by small but 
systematic inaccuracies in the network outcome of patient samples. Furthermore, they are 
used to give an indication that the results from library search should be used in case of rare 
components unavailable to the network model and round the network outcome of each 
component to the nearest 5%. The expert rules aim a generalization of the quantitative 
results of future patient samples. The rules may be defined as simple “Basic” like “IF ... 
THEN ... ELSE ...” statements. 
The neural network engine of the NEURANET program is based on a back-propagation 
neural network (16). This program contains a three-layer network, consisting of an input 
layer with a number of nodes (neurons) equal to the number of input variables (absorbances 
at different wave numbers), a single hidden layer with a variable number of nodes, and an 
output layer with a number of nodes equal to the number of components (maximum, 10). 
The input nodes are connected to the output nodes via the nodes of the hidden layer. All 
nodes of the hidden layer have every possible connection with the input and the output 
nodes. Each connection carries the signal and an individual weight. The final weights in all 
connections reflect the knowledge of the underlying spectral patterns. The complex of 
weights may be interpreted as the regression coefficient in a regression analysis. The 
multiple inputs of a spectrum are converted to a single concentration of a single component. 
The final set of weights is found by learning by back-propagation. With this method, the 
neural network is provided with a set of training spectra (samples) with known 
concentrations and iterates around a loop in which it predicts for each sample the analyte 
concentrations and compares these to the known concentrations (forward step). Depending 
on the differences between the calculated and the known outcome concentrations, the 
weight values will be readjusted (backward step). This happens for each sample of the 
training set in turn and is repeated many times over the complete data set. The number of 
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iterations (epochs) is usually very large. Before training, the starting weights are 
randomized between –0.1 and 0.1.  
The performance of the network is monitored by looking at the root mean square error 
(RMSE). The RMSE is calculated by first taking the sum of squared differences between 
the desired and obtained output values of the training set. The square root is taken from the 
average of the sum of squares, which are averaged by the number of outcomes (maximum 
of 10) and the number of training samples. NEURANET contains several parameters for 
data preprocessing (e.g., selection of wave number ranges and scaling) and network design 
(topology). The neural network parameters have to be tuned by means of an independent 
validation set. This validation set is a representative set of spectra from samples of known 
composition and is used for testing the performance of the network but not for training. The 
training behavior of the network is monitored by looking at a graph depicting the decrease 
and convergences of the RMSE of both the training and the validation sets against the 
number of epochs. In worse cases, both RMSE curves will diverge instead of converge. To 
prevent overfitting of the neural network model, the training process is stopped when the 
RMSE of the validation set is at its minimum value (early stopping rule). In addition to 
training and validation (used for tuning), the performance of the network should be tested 
with a test set. More information about neural network processing can be found elsewhere 
(17;18). 
The NEURANET program enables building of one or more named methods, based on 
spectroscopic absorbance data. Each method contains a combination of standard 
information (e.g., description of the components), a spectral library, a trained neural 
network model, and some expert rules. After selection of a method and of a spectrum from 
the file list, the program automatically performs a library search, network predictions, and 
expert rule filtering for prediction of the outcome of a sample with an unknown 
composition. The whole combination of the analysis with the Golden Gate sampling device 
and the final NEURANET model is called the GGN method.  
 
Development of the library and neural network of the GGN method 
The 261 samples, composed of 25 pure components and 236 mixtures, were analyzed with 
the Golden Gate sampling device, and their spectra were added to the library of the 
NEURANET program. They were stored at 16 cm–1 resolution intervals of the 4000–400 
cm–1 analysis range. A spectral range was defined for searching in the 3700–450 cm–1 range 
with the correlation-matching algorithm. The spectra of 248 pure components and mixtures 
of AMUR, BRUSH, CARB, CYST, STRUV, URIC, WEDD, and WHEW were recorded 
with the Golden Gate device. Of these, 199 were used as a training set for the neural 
network. This training set served for the construction of a network model that has a 
mapping (topology) suitable for the analysis these eight components (eight output neurons) 
in the unknown samples. The remaining 49 spectra were used as a validation set. A spectral 
range from 1840 to 448 cm–1 with 16 cm–1 resolution intervals was selected for neural 
network processing, giving rise to 88 input neurons. The network topology parameters for 
training the neural network were optimized by monitoring the RMSE of the validation set. 
The RMSE values for both the training and the validation sets were graphically depicted to 
check potential overfitting of the neural network model. A more extensive description of 
network processing in relation to urinary calculus analysis can be found elsewhere (14). A 
few expert rules were added to the network-predicted data for further optimization of the 
results of unknown samples. These rules were added as a result of small but structural 
differences in composition found between visual inspection of the Golden Gate spectra by 
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two technicians and the network predicted-results of the patient samples (test set). The rules 
we added without any foreknowledge of the results from the KBr method.  
 
Data processing and statistics 
The results of the KBr and GGN methods were compared using Altman-Bland agreement 
plots (19) for the 8 commonly occurring components and a combination of these. With 
these agreement plots, the individual differences (AMUR%[KBr]n-AMUR%[GGN]n, 
CYST%[KBr]n-CYST%[GGN]n of sample n, and so forth) of both methods are calculated 
and plotted against the individual mean results (e.g., mean of AMUR%[KBr]n and 
AMUR%[GGN]n of sample n) of both methods. The bias (mean of the individual 
differences between the GGN and KBr methods) and the 95% agreement limits (1.96 SD of 
the differences between both methods) are summarized in Table 3. The bias and 95% 
agreement level were calculated for the eight components separately and for a combination 
of them by taking the individual calculated differences of the eight components together. 
The bias and 95% agreement limits of the combination of the eight components are shown 
in an agreement plot in Fig.3.  
 
RESULTS 
A KBr transmission spectrum of a patient sample consisting of 60% BRUS and 40% 
WEDD is shown in Fig 1A. Fig. 1B shows a transmission spectrum of the same sample 
obtained with the Golden Gate device. Analysis of the URIC dilution series with the runs-
test showed that the IR intensities of both the KBr and GGN assays were linear at 0–100%. 
 

 
Figure 1. IR transmission spectra of a urinary calculus containing 60% BRUS and 40% WEDD 
obtained by the KBr method (A) and the Golden Gate device (B). 
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Compositions of urinary calculi with the KBr method 
Two of the 100 analyzed patient samples produced weak spectra. They were removed from 
the data set because of insufficient sample material for reanalysis. The quantitative 
compositions of the remaining 98 patient samples, as analyzed with the KBr method, 
revealed that 92 of them contained at least one of the 8 commonly occurring components. 
All 92 patient samples were single components or binary or ternary mixtures of one of these 
8 components. The majority of them contained calcium oxalate (WHEW and WEDD) 
and/or CARB. The detection frequency of each of the eight components in the 92 samples 
was: AMUR, 1.1%; CYST, 1.1%; URIC, 3.3%; STRUV, 4.3%; BRUS, 13%; CARB, 48%; 
WEDD, 70.7%; and WHEW, 75%. The percentage urinary calculi that contained one, two, 
or three of these components were 14%, 54%, and 32%, respectively. Six of the 98 urinary 
calculi contained less frequently occurring components. One consisted of quartz, two of 
uric acid dihydrate and three of a fatty substance. Two of the latter were highly similar to 
feces, while the other was similar to palmitic acid. 
 
Development of the GGN method 
Neural network  
After repeated, batch-automated training of the neural network with different topologies, a 
final topology was found. Each training session took ~20 min for each topology. The final 
topology had eight hidden neurons. With this topology the RMSE steadily decreased to a 
minimum value of 2.3% for the validation-set (Fig. 2). This minimum value was reached 
after a training of 54000 epochs (cycles). At this number of epochs, the error of the training 
set was 1.5%. 
 
Intermediate analysis of composition of urinary calculi 
The 98 patient samples, which were also analyzed by the KBr method, were analyzed with 
the Golden Gate device. The composition of each calculus was estimated with library 
searches and neural network prediction of the intermediate GGN method. Computerized 
estimation of the composition of a single sample with the GGN method was obtained 
within ~1 s by means of simultaneous library search and network prediction followed by 
expert-rule filtering. The compositions of six of the 98 patient samples could not be 
estimated by the ANN because these samples did not contain any of the eight commonly 
occurring components available in the network model. Four of these samples could be 
detected with library searches of the GGN method in the first hit (searched from 3700 to 
450 cm-1). As with the KBr method, one was found to contain quartz, two contained feces 
and one contained a component similar to palmitic acid. The composition of the remaining 
two, which contained uric acid dihydrate according to the KBr method, could not resolved 
by library search with the GGN method, since the spectrum of uric acid dihydrate was not 
available in this library. 
 
Addition of expert rules 
As a result of visual inspection of the Golden Gate spectra and the outcome of the neural 
network predictions of the 92 patient samples (test set), 14 simple expert rules were added 
to the GGN method (Table 2). After addition of all expert rules to the GGN method, the 
composition of the 92 patient samples, as analyzed with the Golden Gate device, was 
reestimated with the final GGN method. The results of the final GGN method were used for 
comparison with those of the KBr method. 
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Figure 2. RMSE of both the training and the validation sets plotted against the number of network iterations 
(epochs). The minimum RMSE (2.3%) for the validation set was reached at 54000 epochs. At this number of 
epochs, a RMSE of 1.5% was found for the training set. 
 
Comparison of the KBr method and the GGN methods 
The agreement between the KBr and GGN methods, as obtained from the Altman-Bland 
plots of the results of 92 patient samples is shown in Table 3. The Altman-Bland plot of all 
patient results is shown in Fig. 3. The plot compares the results of all eight components 
obtained from the 92 patient samples, analyzed with the KBr and the GGN methods. The 
dashed lines express the 95% confidence interval of the differences between both methods. 
Of the 92 samples, 2 consisting of WHEW + WEDD and 1 consisting of CARB + STRU 
showed 20% difference between both methods (see Fig. 3). Because each of the three 
samples were mixed stones composed of two concomitantly occurring components, an 
increased amount (percentage) of one component relative to the other sample produced an 
equal decrease of the amount of the other component. Therefore, the Altman-Bland plot 
shows six data points at 20 % difference between the methods. For example, the sample 
containing CARB and STRU was composed of 60% CARB and 40% STRU measured with 
the KBr method, whereas it contained 80% CARB and 20% STRU measured with the 
Golden Gate method. The resulting data points (x,y) of the Altman-Bland plot are (70,20) 
and (30,20).  
 
DISCUSSION 
We describe a new IR method for the analysis of the composition of urinary calculi. This 
method makes use of a Golden Gate Single Reflection Diamond ATR device and a newly 
developed library and neural network model for quantification. The outcome was compared 
with that of an IR method with KBr tablets.  
Visual inspection of the IR spectra made clear that KBr spectra (Fig. 1A) have more 
definite bands than those recorded with the Golden Gate ATR device (Fig. 1B). The Golden 
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Gate ATR device also yields spectra with less absorbance intensities at higher wave 
numbers when compared to the traditional transmission spectra (Fig. 1A). The underlying 
cause is different sample radiation penetration depths at different wave numbers. It did not 
influence the interpretation of the spectra obtained with the Golden Gate assay, probably 
because of the predominant use of the bands with sufficient spectral definition in the 2000–
400 cm–1 region (fingerprint area). 
 

Table 2. Expert rules added to the GGN method. 

Name Expert rule 
cystcheck1 IF Cyst<10 THEN Cyst=0; 
  
uriccheck IF [AmUr+ Uric]<7.5 THEN AmUr=0 AND Uric=0 AND Normalize;, 
  
amurcheck1 IF (Uric < 7.5) AND (AmUr > 12.5) THEN 

    AmUr=[Uric + AmUr] AND Uric=0 AND Normalize; 
  
amurcheck2 IF (AmUr < 7.5)AND (Uric > 12.5) THEN  

    Uric=[Uric + AmUr]AND AmUr=0 AND Normalize; 
  
whewwed1 IF Wedd<0 THEN WEDD=0 AND Whew=[Wedd+Whew]; 
  
whewwed2 IF Whew<0 THEN Whew=0 AND Wedd=[Wedd+Whew]; 
  
whewwed3 IF ((Wedd<3.5) AND (Whew<3.5)) AND ((Wedd>0) AND (Whew>0)) THEN 

    IF Wedd>Whew THEN Wedd=[Wedd+Whew] AND Whew=0 
    ELSE ,Whew=[Whew+Wedd] AND Wedd=0 AND Normalize;; 

  
carbcheck1 IF (Carb>35) AND ((Brus<10) AND (Stuv<10)) THEN  

    Carb=[Brus+Carb+Stuv] AND Brus=0 AND Stuv=0; 
  
carbcheck2 IF (Carb>35) AND ((Brus>10) AND (Stuv<10)) THEN 

    Carb=[Carb+Stuv] AND Stuv=0 AND Normalize; 
  
amurcheck3 IF (([AmUr+Uric]>4) AND ([AmUr+Uric]<30)) AND 

    ([Brus+Carb+Stuv]>50) THEN AmUr=0 AND Uric=0; 
  
amurcheck4 IF (AmUr>25) AND ([Brus+Carb+Stuv]<30) THEN  

    AmUr=[AmUr+Brus+Carb+Stuv] AND Brus=0 AND Carb=0 AND Stuv=0; 
  
amurcheck5 IF ([AmUr+Uric+Stuv]<10) AND (Carb>10) THEN  

    Carb=[Carb+AmUr+Uric+Stuv] AND AmUr=0 AND Uric=0 AND Stuv=0; 
  
amurcheck6 IF ([AmUr+Uric+Stuv]<10) AND (wedd>10) THEN 

    Wedd=[Wedd+AmUr+Uric+Stuv] AND AmUr=0 AND Uric=0 AND Stuv=0; 
  
amurcheck7 IF ([AmUr+Uric+Stuv]<10) AND (Whew>10) THEN 

    Whew=[Whew+AmUr+Uric+Stuv] AND AmUr=0 AND Uric=0 AND Stuv=0; 
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Table 3. Comparison of the results of the KBr and  
GGN methods for 92 patient samples. 

 Number Bias (95% confidence 
Interval), % 

95% Level of 
 agreement, % 

 AMUR 92 -0.1% (-0.3 to  0.1)  2.0% 

 BRUS 92 -0.8% (-1.5 to -0.2)a  6.2% 

 CARB 92 0.5% (-0.7 to  1.6) 10.8% 

 CYST 92 0.0% ( 0.0 to  0.0)  0.0% 

 STRU 92 0.4% (-0.9 to  0.1)  4.7% 

 URIC 92 -0.1% (-0.6 to  0.4)  4.4% 

 WEDD 92 3.8% ( 2.5 to  5.2)a 12.8% 

 WHEW 92 -2.8% (-4.3 to -1.3)a 14.2% 

 ALL 736 0.0% (-0.3 to  0.3)  9.0% 

a Significant bias 
 
 

 
Figure 3. Bland-Altman method agreement plot of the results of eight components in 92 
 urinary calculi as analyzed with the KBr method and the GGN method. The dashed lines 
 are the 95% confidence interval of the differences between both methods. 
 
 
Development of the neural network model 
From a previous study (14), we found that the compositions of urinary calculi using neural 
network prediction were similar to the results obtained with PLS regression. In both cases, 
the urinary calculi were analyzed with IR spectroscopy, using KBr tablets. The PLS 
regression model and the neural network model were developed for quantification of 
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mixtures of WHEW, WEDD and CARB, whose incidence rate in urinary stones is ~80% in 
Western countries (20). The RMSE values of the validation sets were 1.7% for PLS 
regression and 1.6% for network prediction, respectively. The previous study also described 
the development of a neural network model trained with the eight most commonly 
occurring components. This neural network model has been used successfully for several 
years in our laboratory (UHG). On the basis of these findings, we concluded that for 
quantification of the composition of urinary calculi, neural networks would be useful as or 
better then linear models such as PLS regression. We therefore developed a new neural 
network model with the NEURANET program after replacing the KBr sampling device by 
the Golden Gate accessory. 
Training of the ANN went remarkably well, despite the previously mentioned relatively 
poor spectral band definition in the fingerprint area compared with the KBr method. 
Although the NEURANET program contains several facilities to make network training 
rather simple, there are several difficulties in applying ANN models. The ANN parameters 
(topology) are often difficult to estimate, and large training sets are often needed. The 
number of training samples should be at least more than the number of input units (88 in 
our case), but the required number of training samples also strongly depends on the noise 
level in the targets and the complexity of the adaptation of the network to the target 
function. The absorbance values of IR spectra are linearly related to the concentration 
(Lambert–Beer law). Therefore, a relatively small number of learning samples (n=199) was 
needed for training. We gave special attention to the risk of overtraining (overfitting). In 
this case the network looses generalization (robustness) and will adapt (learn) to 
unimportant spectral features, such as noise. Overfitting (and underfitting) was monitored 
by looking at the RMSE errors of the validation and training sets (Fig. 2). If the validation 
error became much higher than training error, the network was probably overfitted and 
another topology was applied. In addition, the robustness of the neural network model is 
important and can be tested by retraining the neural network with different initial weights 
each training session, providing that the other conditions are left unchanged (e.g., topology 
settings, training and validation sets). If the RMSE values at a certain number of epochs 
show large differences for the different training sessions, the network model can be 
considered to be unstable. The final criterion for assessing the network model was the 
comparison of the results from the independent test set with the results obtained with the 
reference method. 
Several heuristics exist for the choice of the starting values of many of the topology 
parameters. However, since the optimal parameter settings strongly depend on the nature of 
the problem and on the chosen representation of the input and output objects, it is not safe 
to rely exclusively on heuristics. Therefore, an operator must have sufficient knowledge of 
network training to select the topology parameters (e.g., number of hidden neurons) and 
must interpret the numerical and graphical network outcome. Using NEURANET, 
consecutive unattended training with different topologies was possible when a number of 
topologies were set out in advance. After training, estimation of compositions of patient 
samples is very fast when the stored ANN method is used.  
More detailed information about the theoretical background of ANNs is out of the scope of 
this report, but can be found elsewhere (17;18). 
 
Development of the expert rules 
Urinary calculi are always composed of pure components or binary or ternary mixtures. For 
those components absent in the sample (e.g., five absent in case of a three-component 



Chapter 6 

 

 
158 
 

calculus), small positive or negative numbers may occur in the network outcome of patient 
samples on a regular base (Table 4). This is a consequence of network training, which will 
always predict the outcome of the eight components simultaneously, whether or not they 
are present in the sample. Because the total outcome of any sample is always 100% (Table 
4), a small outcome (percentage) may occur for those components absent in the sample. 
These inaccuracies may occur because no prediction is perfect, the samples may contain 
trace amounts of impurities caused by their passage through the urinary tract, and some 
samples produce rather noisy spectra. In this last case, the network assumes detection of 
small amounts of a component characterized by a great number of spectral bands (e.g., 
AMUR). Therefore, a few expert rules were defined (see Table 2). In essence, the expert 
rules can be considered as automated corrections of the network outcome, which otherwise 
would have been made manually by expert technicians after visual inspection of the IR 
spectra. Some of these rules are counterparts of each other, describing almost the same type 
of correction (e.g., amurcheck1 and amurcheck2). Another rule, named whewwedd3, seems 
to be rather complex, but only assigns the smallest oxalate outcome (Whew or Wedd) to the 
largest one, providing that both oxalate outcomes are positive and <3.5%. The rationale is 
not a physical/chemical one, but only a small correction. If this rule was not applied, both 
oxalate outcomes would be forced to zero by rounding and normalization, in spite of the 
fact that a small amount of oxalate is present in the sample. 
 
Table 4. Network- and expert system-predicted outcomes for samples Aa and Bb,c.  

 AMUR BRUS CARB CYST STRU URIC WEDD WHEW 

Patient Ad         
Network -3% 46% 44% -2% 0% -0% 13% 2% 

Expert  45% 40%    15%  
         

Patient Be         
Network  0%  2% 94% 0% 1% -1% -5% 9% 

Expert   95%     5% 

a
 Sample A contains BRUS, CARB, and WEDD. 

b
 Sample  B contains WHEW and CARB. 

c
 Both samples were analyzed with the Golden Gate assay. 

d
 Library first hit: WEDD-BRUS 10%-90%; second hit: BRUS-CARB 50%-50%. 

e
 Library first hit: WHEW-CARB 10%-90%; second hit: WEDD-CARB 10%-90%. 

 
Except for normalization of the network outcome to the nearest 5%, no special expert rule 
was applied to patient sample A (Table 4). Sample B shows somewhat inaccurate results of 
both calcium oxalates (WHEW and WEDD). WHEW turned out to be predominant relative 
to WEDD. Because this has happened several times, an expert rule was defined by simply 
adding the values of both calcium oxalates and forcing the value of WEDD to zero. This 
rule was defined as follows: 

IF wedd<0 THEN whew=[wedd+whew] AND wedd=0;  
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This rule caused 0% WEDD and 4% WHEW. After normalization of sample B the final 
composition of the expert system was 5% WHEW and 95% CARB (Table 4). This outcome 
reflected the real composition of this sample, which was based on careful visual inspection 
of the band intensities of the KBr spectrum by a trained technician. 
 
Method comparison 
The 92 consecutive samples used for method comparison were regarded to be a 
representative selection of urinary calculi in our daily practice. They had similar frequency 
distribution of components and number of components per sample, compared with 
historical data (not shown). X-ray diffraction is occasionally recommended as a reference 
method for urinary calculus analyses. However, x-ray diffraction cannot adequately detect 
amorphous substances (3). CARB is, for example, sometimes overlooked, but can be 
detected by a simple CO2 test following acidification with HCl. Quantitative analysis of 
CARB may, however, be difficult. We therefore decided to compare the GGN results in 
both an analytical and a managerial sense with those obtained by an IR method with KBr 
tablets. This method was routinely used at the time of the study and was to be substituted 
with a less time-consuming and more robust analytical method. 
The bias of the outcome of the KBr and GGN methods of the 92 patients' samples was 
significantly different from zero for BRUS, WHEW, and WEDD (Table 3). The small bias 
of BRUS (–0.8%) seems irrelevant. The biases for WHEW (–2.8%) and WEDD (3.8%) are 
small and carry different signs, probably related to their concomitant occurrence in urinary 
calculi. The 95% levels of agreement of WHEW, WEDD, and CARB were >10% (Table 
3). These components often occur concomitantly in a single sample, causing complex 
spectral patterns. The 95% level of agreement of all results was 9%. This value should be 
taken as an indication, since it is statistically not correct to base such calculations on 
mutually dependent variables (each sample occurs 8 times). Only 3 of 92 patient samples 
exhibited maximum differences of 20%. These differences occurred consistently in samples 
that contained two rather similar components (WHEW + WEDD, and CARB + STRU). It is 
not known what analytical precision and bias are relevant in terms of the prevention of 
urinary calculus recurrence. We nevertheless consider the encountered differences minor 
and possibly irrelevant with respect to the ultimate (dietary) advice.  
Apart from adequate quantification of the eight commonly occurring components, the 
library search in the GGN method enabled detection and quantification of rarely occurring 
components in four samples. This feature may be further developed by the addition of other 
components to the library, like uric acid dihydrate, in the near future. On the other hand, 
library search may be used for verification of network results. However, it may sometimes 
be somewhat difficult to establish an accurate quantitative composition of a sample in this 
way. This is illustrated by the results from the first and second hits obtained with a library 
search of patient A in Table 4. 
 
In conclusion, the Golden Gate assay seems superior to the KBr assay because of its 
smaller sample size, because there is no need for sample pretreatment except for grinding, 
the turnaround time is shorter, and no time is lost because of KBr tablet breakage (Table 5). 
The GGN method does, however, require higher initial investment because of the Golden 
Gate ATR sampling device.  
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Table 5. Managerial summary of the KBr and Golden Gate assays 
 
     KBr assay  Golden Gate assay 
  
Sample size    1.5 mg   < 1 mg 
Sample pretreatment   Yes   No 
TAT     30 min.   15 min. 
MTBF     1 day (pressing)   
Pricea (US $)    27600   34800 
Required Knowledge   experienced  experienced 
 
TAT, turnaround time (analysis and interpretation); MTBF, mean time between failures. 
a FTIR + sampling device investments. 
 
Because no sample pretreatment is needed, different brands of FT-IR spectrometers give 
similar spectra under equal local conditions (e.g., temperature and sample pressure), and the 
chemical composition of urinary calculi is similar in most developed countries, it would be 
interesting to investigate whether the GGN method could be transferred to other 
laboratories, without retraining the neural network with local data. This, however, awaits 
confirmation. The required expert knowledge for spectral interpretation is minimized by 
use of the ANN and library, but visual inspection remains necessary. 
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INTRODUCTION 
Patients with urinary calculi are frequently treated with extracorporeal shock wave 
lithotripsy (ESWL). The chemical composition of these calculi is often analyzed with 
Fourier transform infrared spectroscopy (FT-IR), using different sampling devices, such as 
tablet holders for KBr tablets, diffuse reflectance, and the Golden Gate Single Refection 
Diamond ATR sampling device. These FT-IR sampling methods make use of only minute 
amounts of authentic sample material, requiring no, or limited sample pre-treatment. The 
analysis is carried out in order to investigate the underlying disorder that causes the 
formation of the urinary calculus. With this information, the clinician can prescribe 
medicine, or diets to prevent recurrence of the urinary calculus. 
 
Spectra of urinary calculi are often rather complex, requiring a substantial amount of expert 
knowledge of lab-technicians to quantify the calculus compositions by means of visual 
interpretation of the spectra. In this case the use of computerized library search may support 
this interpretation process. The computer compares the spectral characteristics of the 
unknown sample with all spectra available in the library and calculates which library 
spectrum is the most similar to the patient spectrum. This method may be limited by the 
number of spectra in the library. Normally huge numbers of library spectra are needed to 
obtain reliable results. It is virtually impossible to build a library, containing all possible 
combinations of components. Therefore, it is often necessary to combine and interpolate the 
best hits of a ‘library’ search, to obtain a reliable estimation of the composition of a patient 
sample. This interpolation process still has to be done by visual inspection of the spectra by 
trained technicians, after initial library search. 
 
In order to improve the prediction accuracy of the compositions of urinary calculi we 
developed a computer program, based on an artificial neural network (ANN) tool and 
computerized library search. This program was especially developed for interpretation of 
spectra from urinary calculi, measured in the mid-infrared region between 4000–400 cm-1. 
The network device of this program can predict the relative composition of maximally ten 
components of a single sample (1). The neural network device is based on the back-
propagation principle (2) (see also chapter 3.2.2), being a three-layer network, consisting of 
an input layer with a number of nodes (neurons) equal to the number of input variables 
(absorbances of the selected wave numbers), a single hidden layer with a variable number 
of nodes, and an output layer with a number of nodes equal to the number of components to 
predict. The input nodes are connected to the output nodes via the nodes of the hidden 
layer. All nodes of the hidden layer have every possible connection with the input and the 
output nodes (see Fig, 30, chapter 3.2.2). Each connection carries the product of the 
absorbance value belonging to a certain wave number and an individual weight. To obtain a 
network model, appropriate for the prediction of compositions of patient samples, the ANN 
should be presented with a sufficient number of samples with a known composition. These 
samples are called the training (calibration) samples. During training, the obtained values of 
the output neurons are compared to the real outcomes of the respective components of the 
training samples. In the next step the weight values are readjusted (backward step), 
depending on the differences between the calculated and real outcome of the components. 
After readjustment of the weights, the whole calculation process is repeated again. This 
process of calculation of the outcome, computation of the differences between the 
calculated and real outcome of the components, and readjustment of the weights, will be 
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repeated (iterated) until a pre-fixed number of iterations is reached, or the difference 
between the calculated and real outcome is between a acceptable limiting value (error 
value). The differences between the calculated and real outcome of the components is 
expressed as root mean square error (RMSE). The final weights in all connections are 
stored in the network model and reflect the knowledge of the underlying spectral patterns. 
In a certain sense the weights may be compared to the regression coefficients of e.g. linear 
regression. In contrast to library search, an ANN is a real quantitative method, capable of 
interpolation between quantitative compositions unavailable to the trained neural network 
model.  
 
For further improvement of the accuracy of the neural network predicted compositions, we 
developed a subroutine in the program for the definition of a number of user definable 
expert rules. These user-defined rules have a syntax corresponding to simple ‘Basic’ 
language IF ... THEN ... ELSE ... statements. The syntax of these rules may be found in 
appendix A. In addition to the user definable rules, we also added a number of static 
‘expert’ rules that should alert a technician to use the results of the library search in case of 
rarely occurring components, which were not included in the training set to the network 
model. Furthermore we added static rules for rounding the network outcome of each 
component to the nearest 5%. All rules aim at a generalization of the quantitative results of 
patient samples.  
 
This designed computer program, which we called Neuranet (1) was developed because no 
specialized software was available for the prediction of the composition of urinary calculi, 
except for standard software for spectral processing and the availability of some libraries 
containing spectra of urinary calculi (3;4). The program enables building of one or more 
named methods, based on spectroscopic absorbance data of urinary calculi, in the range of 
4000–400 cm–1. Each method contains a combination of: standard information (e.g. 
description of the components); a spectral library; a trained neural network model; some 
expert rules and properties for tuning and measurement of the performance of the different 
technologies included in the method. After selection of a method and a previously recorded 
spectrum from a file list, the program automatically performs data pre-processing, 
computerized library search, neural network predictions and expert rule filtering, for 
prediction of the outcome of a sample with an unknown composition. This manuscript 
explains the major functionality of the program. More in depth information with respect to 
the theoretical background of neural network processing is given in chapter 3.2.2 and can 
be found elsewhere (2;5;6).  
 
 
General description of the ‘Neuranet’ program 
Neuranet is a Windows based program running on a Windows 95/98 and NT platform. The 
program can read any IR absorbance or transmission file, provided that the spectra are 
measured from 4000–400 cm-1. Transmission spectra will automatically be converted to 
absorbance spectra by the program. The spectrum files should be stored as comma 
separated value (.CSV) files, or files with the spectrum file format (.SPC). Because FT-IR 
spectra obtained from urinary calculi, may differ as a result of different sampling devices, 
users are enabled to build their own library and neural network model.  
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Figure 1. Screen capture of the developers part of Neuranet. The method explorer (left panel) shows an unfolded 
tree with the major sections (books, or folders) of the Neuranet method (Neuranet.Met). Each section contains one 
or more items whose properties have to be set on the workspace. The workspace (right panel) shows the properties 
of the patient form of this method. 
 
Therefore we developed two separate computer applications in one program namely: the 
‘developers part’ and the ‘user part’. With the developers part of the program, the user can 
build one or more so-called methods. These methods contain all settings to perform spectral 
interpretation and quantification. A method can be selected and used in the user part of the 
program. Each method contains the following sections: a general section, a library section, 
a network section and a patient report section. Figure 1 shows the outline of the developers 
part of the Neuranet method. 
 
Each section of a method is described by a number of items, whose properties have to be 
established before the method can be used in the user part of the program. An extensive list 
with functional specifications of all sections of the developers part is given in appendix B. 
Methods may be created from scratch, modified, deleted or copied. After making several 
copies of an initial method, one can make small changes to e.g. the topology (parameter 
settings) of the network section of a method. Activating the ‘train’ button in the developers 
part of the program gives a user the opportunity to select one, or several methods for 
unattended batch-wise training. Because training of neural networks may be a time 
consuming process, comparison of several network outcomes will be much easier after this 
unattended batch-wise training. Each method, including all settings will be stored on disk. 
Only methods with a fully customized network model and library can be used in the user 
part of the program. Sections, or items of methods that are not properly filled-in for use in 
the user part of Neuranet, will be flagged red. The developer part of the program may be 
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password protected to prevent accidental changed of fully customized methods. An 
example of method development is given in appendix D. This development is illustrated by 
a method intended for the prediction of 3 components (whewellite, weddellite and 
carbonate apatite).  
 
For prediction of the composition of patient samples, the user part of Neuranet must be 
used. After selection of a method, the settings will be loaded. This method contains all 
relevant settings, such as the spectrum file location and a trained neural network model. 
The user part can be divided in two major sections: the spectrum explorer and the 
workspace of the program (Figure 2). The spectrum explorer contains a list with files of all 
recorded spectra. After selection of a spectrum, library search and network prediction 
followed by filtering by expert rules will be performed automatically, within approximately 
one second. The results from these processes are made visible on a form of the workspace. 
The workspace of the user part contains 5 tab-sheet forms that can be selected by pressing a 
tab-label on the workspace. The workspace contains the following forms: Patient entry, 
Library search, Network results, Spectral view and All results. All fields on these forms 
will be automatically filled in with results obtained from the currently selected patient 
sample, or can be entered by the user. A more extensive description of the functional 
specifications of spectrum explorer and the five tab-sheet forms of the user part of Neuranet 
is given in appendix C.  
 

 
Figure 2. User part of Neuranet with the spectrum explorer (left panel) and workspace (right panel). The 
workspace is subdivided over 5 tab-sheets. In this case the 'patient entry' is active. 
 
After processing of a number of patient spectra in the same run, the final compositions of 
the patient samples are stored on disk as spectrum file (.SPC). The contents of this file may 
be imported in a Laboratory Information Management System (LIMS). A more detailed 
description of the results of some selected patient samples will be given in the next section.  
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Processing of patient samples with the ‘user part’ of Neuranet 
For the prediction of the composition of urinary calculi, the network model of the Neuranet 
method (1) was developed for the prediction of the following eight components: 
ammonium hydrogen urate (AMUR), brushite (BRUSH), carbonate apatite (CARB), 
cystine (CYST), struvite (STRUV), uric acid (URIC), weddellite (WEDD) and whewellite 
(WHEW). In addition to mixtures similar to those used for network training, the library of 
the Neuranet method contained several special components. After network prediction the 
results were filtered by some selected expert rules. Like any Neuranet method, this method 
contains 3 standard expert filters, namely: extreme value limit, truncating to zero and 
normalization. The extreme value limit was set to minus 15% to notify the user with a 
message to ignore the network results and use the results from the library search in case of 
patient samples with qualitative compositions unavailable to the network model. The 
truncating to zero rule was set to 3.5, meaning that all network outcome ≤3.5 will be forced 
to zero, before normalization. The normalize rule effects rounding the network outcome to 
the nearest 5 fold and normalization of the component concentrations to 100% (see also 
appendix D). In addition to the three standard rules, the Neuranet method contained 22 
dynamic expert rules. These rules were added to correct small, but systematic differences 
between the network outcome and the real composition of a patient sample. The real 
compositions of the patient samples were estimated by a trained technician by means of 
visual inspection of the spectrum and was based on his knowledge about the consistence / 
inconsistence of particular components in certain mixtures (e.g. a small amount of uric acid 
in a cystine stone would be highly unlikely).  
In addition to the prediction of the compositions of urinary calculi with Neuranet (network 
results, expert system filtering and library search), the final results were always validated 
by visual inspection of the spectra by a trained technician.  
 
To demonstrate the use of the described Neuranet program, we subsequently processed (as 
an example) 5 IR spectra from patient samples A–E with unknown compositions, after 
selection of the Neuranet method (Neuranet.Met) in the user part of the program. The 
network-, and the expert system predicted compositions and the final results of the five 
patient samples are shown in Table 1. The results of each sample will be described in more 
detail. 
 
Results from sample A 
After selection of the corresponding prerecorded SPC file of sample A in the spectrum 
explorer of the user part, library search and network prediction is performed almost 
instantaneously. Figure 3 shows a list with the twelve most similar spectra of the Neuranet 
library compared to sample A. In this case, the spectral bands (absorbances) of the 
fingerprint area (2112–450 cm–1) of the patient spectrum were compared to the absorbances 
of the corresponding wave numbers of all available library spectra. The correlation 
coefficient was used as search algorithm. Because the correlation coefficient is a similarity 
measurement, the most similar library spectrum is placed on top of the list.  
The four-finger band around 1000 cm–1 (square bracket in Figure 4) indicates that this 
sample contains brushite. However, brushite does not seem to be the only calcium 
phosphate material in this patient sample. The spectral definition of the phosphate band 
around 1000 cm–1 is more or less comparable to the same band(s) in the library spectrum 
containing brushite / carbonate apatite in a relative abundance of 50%/50% (w/w). 
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Figure 3. Library search list of sample A. 
 
 
Table 1. Network- and expert system predicted and final compositions. 

 
 AMUR BRUSH CARB CYST STRU URIC WEDD WHEW 

Sample A:         
network -3 46 44 -2 0 0 13 2 

 expert  45 40    15  
 final  45 40    15  

         
Sample B:         
 network -1 3 98 -3 1 0 3 -1 
 expert   100      
 final   100      

         
Sample C:         
 network 0 23 78 -1 1 -0 2 -3 
 expert  25 75      
 final  25 75      

         
Sample D:         
 network 7 -3 68 3 22 1 0 2 
 expert   80  20    
 final   80  20    

         
Sample E:         
 network -3 -76 1 87 39 -15 126 -59 
 expert Alert message: The expert system could not interpret this composition 
 final Cholesterol 100% 

See text for the abbreviation of the component names. 

 
From these findings we may conclude that the sample contains small amounts of calcium 
oxalate and a mixture of brushite and carbonate apatite. Obtaining the quantitative 
composition from these search results may be rather difficult. Therefore we will have a look 
at the results obtained with the neural network (Figure 5). From the network results it can 
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be seen that it predicts the sample to contain equal amounts of brushite (46%) and 
carbonate apatite (44%) and a small amount of weddellite (13%). The truncate to zero rule 
of the expert system forced the network outcome of ammonium hydrogen urate, cystine and 
whewellite to zero (all less than 3.5%). 
 
In theory, a patient spectrum with a correlation coefficient of 1.000 would be identical to 
the library spectrum. On the other hand, it is unlikely that dissimilar components in the 
library will display correlation coefficients higher than a generally accepted value of 0.95. 
In case of sample A, none of the library spectra had a correlation coefficient higher than 
0.95. Therefore, they are rather dissimilar to the patient sample. From the first nine hits one 
could suppose that sample A should contain calcium oxalate (Whew, or Wedd) and/or 
calcium phosphate (brushite and carbonate apatite). Figure 4 shows the spectra of the 3 best 
hits, on top of the spectrum of sample A. The spectral band at 1300 cm–1 (arrow in figure 
4)) shows evidence that the sample contains calcium oxalate (whewellite, or weddellite). 
 

 
Figure 4. Spectral view of sample A and de 3 best hits from library search. 
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Figure 5.Network predicted and expert system results of sample A. 

 
To preserve normalization of the sample outcome, the results of brushite, carbonate apatite 
and weddelite were rounded to the nearest 5 fold and normalized to 100% by means of the 
normalize rule of the expert system. Visual inspection of the spectrum by a trained 
technician revealed that the final composition of the sample was similar to the one obtained 
by the expert system (Table 1). 
 
Results from sample B 
Figure 6 shows the results form library search of sample B. For library search, the 
fingerprint area of the spectrum was used (2112–450 cm–1). The first 3 hits were very 
similar to the patient spectrum. They had correlation coefficients of 0.9915, 0.9899 and 
0.9897, respectively. At first sight, the fingerprint areas of the 3 library spectra and of 
patient sample B look very similar. However, a closer look will show the differences. There 
are more striking differences at higher wave numbers of the spectra. The area between 
3700–3200 cm–1 shows that the first hit of library search (brushite / carbonate apatite 15% / 
85%) is not very similar to the patient spectrum. The same is more or less true for the 
second hit of library search (struvite / carbonate apatite 10 % / 90%). The patient sample 
has a somewhat bell shaped band in the area between 3700–3200 cm–1, whereas the shape 
of the band of the second hit is more flattened. At first sight, the third hit from library 
search shows to be rather similar with sample B (Figure 6). Neural network prediction and 
expert system filtering revealed that the composition of sample B was 100% carbonate 
apatite. This result corresponded to the third hit obtained from library search. From this 
sample it is shown that the first hit from library search is not always the correct one. 
 
Results from sample C 
The determination of the composition of sample C did not meet with special difficulties. 
Both library search, and network prediction showed the same outcome. This result was 
adapted as final result, after validation of the spectrum.  
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Results from D 
According to library search, sample D was composed of a mixture of struvite and carbonate 
apatite. The first hit from library search showed struvite / carbonate apatite in relative 
abundance of 30%/70%. The second and third hit showed relative compositions of 
20%/80% and 40%/60%, respectively.  
 

 
Figure 6. Transmission spectrum of sample B and the first three hits from library search. 

 
 
 
 
 
 
 
 

Figure 7. Network and expert system 
results of sample D. 
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In addition to library search, the network model had predicted the presence of 7% 
ammonium hydrogen urate (see Figure 7). Although not impossible, the presence of such a 
small amount of ammonium hydrogen urate in a sample containing struvite (infection 
stone) and carbonate apatite is rather unlikely. Figure 8 shows the absorbance spectrum of 
sample D. The spectrum of this sample does not show the presence of any ammonium 
hydrogen urate, which normally demonstrates a great number of sharp spectral bands in the 
fingerprint area of the spectrum. However, the spectrum contains a little noise that may be 
interpreted by the network as a small amount of ammonium hydrogen urate. The presence 
of ammonium hydrogen urate is more often mistakenly identified in noisy spectra. For 
correction of this systematically occurring inaccuracy an expert rule was added to the 
Neuranet method. After application of this rule, followed by the truncating to zero rule and 
normalization rule, the composition of the sample was struvite / carbonate apatite 
20%/80%. This composition was similar to the final composition after assessment of the 
spectrum by a trained technician (Table 1). 
 

 
Figure 8. Absorbance spectrum of sample D. 
 
Result from sample E 
The network predicted results of sample E showed very large positive and negative 
numbers for the components (Figure 9). 
 
The results form library search showed that the calculus was composed of 100% cholesterol 
(correlation coefficient 0.9779). The first three hits obtained from library search are also 
normally reported on the workspace of the network results (Figure 9). Because the calculus 
is composed of cholesterol, it must be a bladder stone. The extreme value rule of the expert 
system ignores the network results and gives the user a hint to make use of the results from 
library search (Figure 9). 
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Figure 9. Network results of sample E. 

 
These results illustrate that the Neuranet program can be very helpful in the interpretation 
process, needed for prediction of compositions of urinary calculi, analysed with IR 
spectroscopy. The program may be used for prediction of quantitative compositions of 
calculi, using any kind of IR sampling device, assuming measurement of spectra from 
4000–400 cm–1 in the mid-infrared region. The operation of the program is simple. 
However, notwithstanding the applicability of the program, visual inspection of the spectra 
by trained technicians remains necessary.  
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Appendix A: Syntax of the expert rules 

In this appendix, the syntax diagrams describe the exact definitions of expert rules. These 
diagrams are similar to syntax diagrams used for the description of the syntax of 
programming languages. To read a syntax diagram, follow the arrows. Frequently, more 
than one path is possible. In a syntax diagram, parallel rectangular and circular boxes depict 
the alternative pathways. Rectangular boxes are drawn for constructions that can be 
specified subsequently, whereas text in circular boxes cannot be specified any further. 
Therefore the text inside the circular boxes must be handled unchanged. 
 
The expert system makes use of the following terms: 

- Components, numbers and logical operators 
- Arithmetic operations between brackets 
- Factors 
- Expressions 
- Statements 
- Rules 

The terms are ordered from a low to a higher aggregation level. Except for components, 
numbers and logical operators, each term may be composed of one, or more of the previous 
terms. Rules have the highest aggregation level and are used as final expert rule. The next 
part contains a description of the respective terms. 
 
- Components. A name of a component is represented with the character ‘c’ and a 

number (0 – 9). In this way maximum 10 components can be defined, depending on the 
component definitions in the general section (appendix B) of the method in the 
developers part. The components (variables) c0 – c9 can be seen as abbreviated 
components names, which are used to store a value of the respective component. The 
syntax diagram is as follows: 

Example: Suppose c7 represents the component whewellite. 
If whewellite is 10% the result of the c7 = 0 (statement) means that  
whewellite will be set to zero (instead of 10%).  

 
- Logical operators. The expert system makes use of the following logical operators: 

C 0 C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9

< > >= <= AND O R=
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Nu m b e r

C o m p o n e n t

A r ith m e tic  e xp re ss io n

E xp re s s io n )(

NC o m p

- Numbers. Any kind, positive, or negative. 
 
- Arithmetic operations between brackets. A text between brackets (…[…]…) is an 

arithmetic expression. In the syntax diagram, the – sign is entered as ctrl -. The expert 
system does not evaluate the multiply, or divide sign before the plus or minus sign. The 
result of [8+3*2] will be evaluated as 22 and not as 14! 

 
Example: The result of [c0 + c4] is the sum of the concentrations of the components  

c0 and c4. The result of [c4 - 10] is the difference between the component  
c4 and the number 10. 
Another arithmetic operation could be e.g. [c7 / c2 - 2]. 

 
 
- Expressions. Expression are build from a factor, a logical operator and another factor: 

 
 

In which a factor is:  
 
 
 
 
 
 
 
 
 
 
 
 
NComp is a variable that contains the number of components with a concentration 
greater than zero. A single expression contains no parentheses. Only when expressions 
are nested, parentheses are required. 
 

[

Nu m b e r

C o m p o n e n t

-

+

Nu m b e r

C o m p o n e n t

]

/

*

F a c to r L o g ica l o p e ra to r F a c to r
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Examples: 
c0 < 10, is true when the composition of c0 is lower then 10. 
(c0 < 10) AND (c0 > 5), is true when the composition of c0 lies between 5 and 10. 
[c4 + c5] > 60, is true when sum of the composition of c4 and c5 is greater then 60. 

 
 

- Statements. Statements are the commands that will be executed by the expert system. 
They are described in the following syntax diagram: 
Normalize will cause normalization of the component concentrations to 100% 

 
Examples: 
c0=[c0+c4], The composition of c4 is added to component c0.  
c0=10 AND Normalize, The composition of c0 is set to 10 and the data will be 
normalized. 

 
 
- Rules. A rule is the final syntax of the expert system to interpret. Each rule must be 

described by the following syntax and must be terminated with a semicolon: 

 
Examples: 
IF (c0 < 10) AND (c5 > 60) THEN c5=[c5+c0] AND c0=0; 
If the result of c0 is less then 10 and c5 is greater than 60, this rule adds the result of c0 
to c5 and makes c0 zero. 

No rma lize

AND

C o mp o n e n t

C o mp o n e n t = Nu m b e r

A r ith me tic
e xp re ss io n

R u le

Exp re ssio nIF T HEN S ta te m e n t E L SE S ta te m e n t ;
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Appendix B: Specifications of the Neuranet developer part 

General section: 
• Path: defines the location of the spectrum files on disk. 
• Components: names, abbreviations and descriptions of up to ten components that 

can be predicted by the neural network simultaneously. 
• Quality: some limits for triggering a warning to the user in case of overloaded-, or 

weak spectra, or in case of possible background problems. 
Library section: 

• Library settings: for setting of the permitted search algorithms (absolute-, or 
squared difference, absolute-, or squared derivative, Euclidean distance and the 
correlation coefficient), the default search algorithm, the default number of 
spectral hits for printing and the default number of library spectra for viewing. 

• Search area: the library resolution (4, 8, or 16 cm-1) and one, or more named areas 
for searching must be specified. These areas can be selected by drawing rectangles 
over the chosen wave number regions. 

•  Library spectra: one or more library spectra can be added to the library. For each 
spectrum a description must be defined. These spectra can be added one by one, or 
by a reading the file names and their descriptions from a spreadsheet file (Lotus 
123 version 1). 

Network section: 
• Selection: the resolution (4, 8, or 16 cm-1) of the spectra and one, or more named 

areas for network processing must be defined. These areas can be selected by 
drawing rectangles over the chosen wave number regions. 

• Train file: one, or more spectra can be added to the network. For each spectrum 
the known composition of the defined components (expressed as weight %) must 
be entered. The training set can be divided in a training-set for calibration of the 
network model and a validation-set for tuning the parameters of the network 
model. A checkbox must me set to define whether the spectrum should be used as 
a training, or validation object. The spectra can be added one by one, or by a 
reading their file names, training- or validation-status and quantitative 
compositions from a spreadsheet file (Lotus 123 version 1). 

• Topology: these settings are needed for each training session (Figure 2). The 
number of input neurons are automatically set by the program and is based on the 
resolution and the selected wavenumber range. The number of output neurons is 
similar to the number of defined components, as set in the “General section”. The 
other settings can be changed by the user. The user can select from 3 transfer 
functions (sigmoid, symmetric sigmoid and linear). The kind of transfer functions 
that can be selected by the user depends on the type of connection (between the 
input−hidden, hidden−output, or input−output neurons). Fully connected means, 
that the input neurons can be directly coupled to the output neurons. To prevent 
adaptation of the network to fixed patterns in the training data, the shuffle training-
fact checkbox can be set, causing randomized offering of the training- and 
validation-samples every training cycle (epoch). The input, as well as the output 
may be scaled between -1 and +1, or auto-scaled. The ”training stopping rule” is 
based on a maximum number of cycles, or a minimum Root Mean Square Error 
(RMSE). Logging of the RMSE errors against the number of epochs will 
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automatically occur. To prevent long error files, an epoch ‘step size’ may be set. 
Setting the check-box Initialize weights (randomized between –0.1 and +0.1) starts 
training from the scratch, otherwise the training will continue from the point it 
stopped before. The properties of the topology are shown in Figure 13. 

• Expert rules: simple BASIC like expert rules can be added, modified, or removed. 
Each expert rule has its own name. Every rule is composed of simple IF … THEN 
… ELSE statements. Arithmetic expressions with different operators (+, -, x, /) are 
allowed, as well as logical operators (=, >, <, >=, <=, AND, OR). More complex 
rules can be build by writing the expressions between parentheses. A “Normalize” 
function takes care of rounding values to the nearest 5 fold and takes care that all 
components add up to 100%. An extreme value can be defined to alert a user to 
use the results from library search in case of rare occurring components, that were 
unavailable in the network model. More information about the syntax of the rules 
can be found in appendix A. An expression evaluator is available, as well as a 
syntax checker.  

• RMSE graph and table: contains a graph and table showing the number of epochs 
against the RMSE of both training- and validation-sets respectively. To prevent 
long error lists, the RMSE values are only shown at epochs equal to the step size 
setting (see the topology settings). This table and graph (Figure 16) are important 
for validation of the performance of the network model. Careful inspection is 
needed to prevent under-, or over-fitting of the network model. 

• Train errors: this consists of a table containing the absolute differences (errors) 
between the predicted and the expected outcome of each training object (sample), 
which are shown for each component separately. A 3-D graph shows the contents 
of this table (x-axis = sample number, y-axis = component number, and z-axis = 
error). This 3-D graph can be rotated for a better perspective view. A second graph 
(2D) shows the mean absolute difference of all components for each training 
object (mean component error against the object number). A third graph (2D) 
shows the mean absolute difference of all objects for each component (mean 
object error against the component number). The table and graphs can be used for 
the detection of outlier objects, or the assessment of problems with certain 
components. Large errors of certain objects (spectra, or samples), found after 
training with a small number of epochs (100 – 200), may be indicative for typing 
errors of the composition (%), interchanging of samples, or just outliers. 

• Test errors: the same tables and graphs as described at the ‘train errors’, but with 
the results of the validation set. 

• Log file: a form containing the training start and stop time and all possible errors 
that did occur during training. 

A patient form section: 
• With this section the developer of the method can select the items and define their 

descriptions that will be printed on the report (Figure 1). This report will be 
printed in the ‘user part’ of the program. 
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Appendix C: Specifications of the Neuranet user part 

• Patient entry: with this form the user can enter some patient identification information, 
such as patient id, patient name, sample name, and the date of request. This 
information will be printed on the patient report. The patient identification entry will 
also be stored on disk for later use. 

• Library search: this form contains an ordered list with the results obtained from library 
search. The list contains the descriptions of the library spectra and the results from the 
default search algorithm (e.g. the correlation coefficient). The order of the list is based 
on the results from the search algorithm. In case of the correlation search algorithm, 
spectra from the library, most similar to the patient spectrum will be placed on top of 
the list. The first x number of library spectra from the list are flagged for viewing on 
the Spectral view page. However, the user can select any other spectrum from the list 
for viewing. After selection of another search algorithm, or after selection of another 
search area from a drop down list, a new library search will be performed 
instantaneously.  

• Network results: this form contains the results from the neural network prediction of a 
limited number of components (maximum 10). These components were specified in the 
General section of the Developers part of the program. For each component, the 
network results are shown in the first column of a table. The predicted data of the 
neural network, which were processed by the expert system, are shown in the second 
column of this table. If the expert system could not interpret the network results, a hint 
is given to use the results from the library search. The final composition of the urinary 
calculus can be entered in the last column of this table. The description of the first hit 
from the library search, shown on the previous ‘Library search tab-sheet form’, is 
shown for direct comparison with the network and expert system results. A user can 
add two extra component names with their quantitative compositions to the table on the 
Network results form. This may be necessary for components unavailable in the neural 
network model. The user can also enter the hardness of the sample and a general 
remark on this form. If the recorded spectrum is not within the defined quality level, as 
specified in the Quality entry of the General section of the network model, a message 
will be shown to check the reliability of the results. The form contains a button for 
viewing the spectrum. Several properties for viewing this spectrum can be changed. 
These properties will be described at the next tab-sheet form. As soon as the results in 
the ‘final results’ column are entered, they will be automatically transported to the 
table of the ‘All results tab-sheet form’. 

• Spectral view: On this form the results of the patient spectrum is shown, together with 
a number of library spectra. The number of library spectra and the kind of spectrum 
depends on whether these spectra are selected (flagged) or not on the Library search 
form. Several options may be set for viewing of the spectra: the  

o wavelength set to cm-1, or nm (x-axis) 
o  spectra may be shown in transmission (%), or absorbance (y-axis) 
o spectra may be stacked, or overlayed 
o a crosshair may be shown 
o the spectra may be zoomed and dragged 
o horizontal and vertical grids may be shown 
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In the stacked mode, the patient spectrum is always the lowest spectrum in the graph, 
followed with library spectrum with the best hit directly on top of it and the rest of the 
spectra in their respective hit order. The purpose of the spectral view is a verification of 
numerical presentation of the library search from the first tab sheet and the results 
obtained with the network prediction. The graph may be printed in its actual state (e.g. 
zoomed). 

• All results: This form contains a table (list) with all results (network, expert system and 
final) of all patient spectra that were processed in the current program session. This list 
can be printed or saved on disk. 
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Appendix D: Development of a method file 

As an example, the most important parts of method development will be demonstrated by 
creation of a potential new method intended for prediction of the composition of 3 of the 
most commonly occurring components of urinary calculi. This appendix only describes the 
development of a method. More detailed information and theoretical background in relation 
to library search and neural network processing may be found in paragraph 3. The 
components of this new method are weddellite (We), whewellite (Wh) and carbonate 
apatite (Cap). In a sample, a combination of the three components always add up to 100%. 
For the development of this method primary (synthetic) standards were used whenever 
possible. These synthetic samples always must reflect their biological counterparts as much 
as possible. If synthetic components are unavailable one has to make sure that the 
biological standards used for the development of the method are actually pure. All spectra 
were measured from 4000–400 cm–1, using a resolution of 4 cm–1.  
 

 
Figure 10. Dialog for the creation of a new method. 

 
New methods may be created from scratch, or by copying parts (sections) of existing 
methods. Figure 10 shows the creation of a new method, named WhWeCap, whose settings 
(properties) are partly copied from an existing method named Neuranet. After creation, 
double clicking the method name WhWeCap in the method explorer of the program will 
unfold the properties of the method. An example of such a method tree containing the 
properties of the Neuranet method is given in Figure 1. Before specification of any network 
settings, the component names and their descriptions have to be entered (see Figure 11). 
 
After specification of the component names, the library settings must be defined. At first 
the default and permitted library search algorithms have to be set. The following algorithms 
may be set: absolute-, or squared-difference, absolute-, or squared- derivative, Euclidean 
difference and the correlation coefficient. A more detailed description of these algorithms 
may be found in paragraph 3c. The user may select a search algorithm from a drop-down 
list (containing the permitted algorithms) in the user part of the program. Additionally, one 
or more search areas have to be defined. Each search area is given a unique name and is 
defined by one, or more non-continuous wave number ranges. For instance, if one is 
interested in searching the whole spectrum range from 4000–400 cm–1, the well known CO2 
band (between 2250–2450 cm–1) may be excluded by selection of wave number areas 
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before and after that band. Dragging with the mouse over the spectrum will carry out the 
wave number selections. Except for wave number selection, the resolution of the library has 
to be set at 16, 8, or 4 cm–1 (Figure 12). Each method may contain one or more of these 
uniquely named wave number groups, which can be selected by name from a drop-down 
list, in the user part of the program.  
 

 
Figure 11. Definition of the component names.  
Two surrounding ‘#’ characters define a subscript layout of the enclosed character. 

 
 
 

 
Figure 12. Search area of a wave number group, named ‘Full spectrum’, defining a non-continuous wave number 
range, by excluding the CO2 band between 2250–2450 cm–1 and the high end of the spectrum.  
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For library search applied on IR spectra of urinary calculi, a resolution of 16 cm–1, a wave 
number range limited to the fingerprint area of the spectrum (2112–450 cm–1), and the 
correlation search algorithm proved to be sufficient. After definition of the library settings, 
the spectra for the library have to be entered. They may be entered one by one, or imported 
from a spreadsheet containing a list of file names and descriptions. The descriptions should 
express the quantitative compositions of the spectra. An example of such a list may be 
found in appendix E. After filling-in the library definitions, the neural network pre-
processing parameters had to be defined. 
 
The resolution of the spectra to be processed by the neural network was set to 16 cm–1 
(selected out of 16, 8, or 4 cm–1) and the spectral wave number range was selected from 
1424–400 cm–1, by dragging with the mouse over the spectrum. Both resolution and wave 
number range settings proved to be sufficient to obtain accurate results from neural network 
processing. Then the spectra for training- and validation (testing) of the neural network 
model were imported by reading their file names and compositions from a spreadsheet file 
(see appendix F). The samples from the training-set are needed for finding the final weights 
that reflect the knowledge of the underlying spectral patterns, whereas the samples of the 
validation-set are used for testing of the performance of the network, as we will see later 
on. After filling-in the preceding network settings, the network topology parameters must 
be entered (Figure 13). As a result of the selected wave number range and resolution, 65 
input neurons will be calculated and entered by the program ([[1424-400]/16]+1), whereas 
the number of output neurons equals to the number of components (3). 
 

 
Figure 13. Initial network topology. 
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The number of hidden neurons determines the total number of connections (weights) of the 
network. Many heuristic guidelines are available for the choice of the number hidden 
neurons. However, since the optimal number of hidden units depends strongly on the nature 
of the problem and on the chosen representation of the input and output objects it is not 
save to rely exclusively on heuristics. Nevertheless we still used a simple heuristic, by 
taking the square root of the number of input neurons (65), which resulted in 8 hidden 
neurons. For the hidden units a symmetric sigmoid activation function was used, to 
transform the outcome of the hidden neurons. This function is a squashing S-shaped 
function, resulting in values between –1 and +1. A linear activation function was used for 
transformation of the outcome of the output neurons. In order to achieve faster convergence 
with fewer oscillations during training, the learning rate was set to 0.05 (range 0–1) for both 
hidden and output neurons. This learning rate is a reduction factor for the adaptations of the 
weights, during back-propagation. The momentum, another factor to avoid getting trapped 
in local minima during training was set to zero (see paragraph 3b-II). The scaling of the 
input variables (absorbances) was set to a range between 0 and 1. Rescaling the input 
values of the spectra between 0 and 1 was performed to take care that the variability of the 
input values reflect their importance relative to the input values of other spectra (otherwise 
spectra with absorbances ranged between e.g. 0.8 and 1.3 may predominate absorbances 
ranged between 0.4 and 0.8). The output values were range scaled between 0.4 and 0.6 as 
starting points. Output scaling is necessary to prevent arithmetical overflow errors as a 
consequence of the use of high output values (between 0 and 100% in our case). The 
predicted output values are re-scaled to their normal numerical value between 0 and 100%, 
before presenting them as program output. The same re-scaling takes place to present the 
calculated RMSE values (error between the calculated and known outcome). The point at 
which the training should stop was set to 20000 epochs (training cycles), or when the 
RMSE of the training-set reached a value ≤ 0.1%. To prevent storage of the RMSE errors 
of every single training cycle, the step size for storage of the RMSE values of both training- 
and validation-set was set to 100 epochs. Because we performed a new training session, the 
weights were randomized with values between –0.1 and +0.1, before training. 
After starting training, the training process stopped after iteration with 20000 epochs. The 
result of this training is shown in Figure 14. From this graph it can be seen that the training 
error gradually decreases, but that the validation error increases after a steep descent, after a 
few epochs. This divergence could indicate the occurrence of outliers. 
 
Therefore the network was retrained with the same topology settings as before, but 
terminated after 5000 epochs. The mean component error of each training object after this 
short training is shown in Figure 15. This error is expressed as the mean of the absolute 
differences between the expected and predicted outcome of the 3 components for each 
object (sample). In this graph two samples, namely object number 27 and 29, have 
extremely large mean component errors (>30%). A closer inspection of the results of this 
graph revealed that the quantitative compositions of two samples of the training-set were 
interchanged (x annotated in appendix F). After fixing this problem and re-training with 
20000 epochs the training showed good convergence and a RMSE of 3.3% for the 
validation-set. 
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Figure 14. RMSE graph of the initial training process (test). 

 
For further optimization of this network model different topologies were developed, which 
were executed by batch-automated training. The content of the initial topology was varied, 
by decreasing the number of hidden neurons from 8 to 2 with steps of 2. To prevent 
premature stopping of the training process, the stopping error was always set to 0.1%. The 
number of epochs for termination of the training was always set to 200000. In all cases the 
assessment of the quality of the network model was based on minimum RMSE value of the 
validation set that was reached at a certain number of epochs. 
 
The topology with 2 hidden neurons showed to be the best. We also modified the learning 
rate (0.03, 0.07 and 0.1) and the range of the output scaling (0–1, 0.1–0.9, 0.2–0.8 and 0.3–
0.7), but the initial setting of 0.4–0.6 showed to be most optimal. Each training session of 
200000 epochs took about 5 minutes for each topology. The final topology had the 
following settings: 65 input neurons, 2 hidden neurons, 3 output neurons, a symmetric 
sigmoid transfer function for the hidden layer, a linear transfer function for the output layer, 
a learning rate of 0.05 between the input- and hidden-, as well as between the hidden- and 
output-layers, scaling of the input values between 0 and 1, and scaling of the output values 
between 0.4 and 0.6. The momentum was set to 0 in all cases. With this topology the 
RMSE steadily decreased to a minimum value of 0.25% and 2.83% for the training- and 
validation-sets, respectively. These minimum values were reached after a training with 
101556 epochs (cycles). With this final network model the total object error of all samples 
of the validation-set were ≤ 4%. The RMSE graph of the final training process is shown in 
Figure 16. 
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Figure 15. Mean component error of each sample (object) of the training-set. 
 
 

 
Figure 16. RMSE graph of the final training process. 



Chapter 7 

 
188 
 

 
To complete the method, some expert rules have to be specified (Figure 17).  
 

 
Figure 17. Expert rules. 

One of the rules is intended to give users a hint to ignore network results and to use the 
results obtained with library search, as large negative numbers may occur when the network 
tries to predict samples with qualitative composition unavailable to the network model. We 
have set this limit to minus 10%. If one or more network results (predicted component 
outcome) meet the preceding criterion (≤ -10%), no further processing will be performed, 
except for showing a hint on screen. Another rule that may be set is a directive that forces 
the network outcome of a component to zero if the value of the component is less than a 
limiting value. This value was set to 3.5%. Besides the two static rules, one final rule has to 
be set, named ‘Normalize’. The function of the rule is to round the outcome of the network 
predictions to the nearest 5% and to take care that the sum of the outcome is always 100%. 
Forcing values to zero will be performed before any data is normalized. After these 
settings, the final WhWeCap method may be used in the user part of the program. 
 
After running the user part of Neuranet (data not shown), a few samples showed to have 
small inaccuracies1 in the network outcome of calcium oxalate (whewellite and weddellite), 
as for samples composed of 100% carbonate apatite. The results of whewellite and 
weddellite were almost equal, but had opposite positive and negative values, such as 8% / -
7% / 99% for whewellite/weddellite/carbonate apatite. If such network inaccuracies occur 
on a regular base, an extra expert rule should be developed. Therefore we added the 
following rule, named WhWeCap, to the WhWeCap method: 
 IF [Whew+Wedd]<5 THEN Whew=0 AND Wedd=0;  
The outcome of a sample, subject to these systematic inaccuracies of network results, is 
shown in table 2. This table shows the outcome of the network results before and after 
reprocessing with the WhWeCap and Normalize exert rules.  

                                            
1 Inaccuracies may be caused by the following: To obtain reliable mixtures, huge amounts of pure 
patient material would be needed for preparation of the library and training- and validation-sets of the 
ANN. This would be virtually impossible. Therefore synthetic, commercially available, components 
were used whenever possible. Of course, the quality and spectral properties of these synthetic 
components were comprehensively compared to their biological counterparts in urinary calculi. On 
the other hand, urinary calculi may contain very small amounts of impurities (e.g. chromogens), as a 
consequence of their passage through the urinary tract. This may lead to very small differences in the 
spectra from the synthetic and biological pure components. These differences are far less than the 
predominant spectral features of the components. Unfortunately the neural network model does not 
contain this information and sometimes calculates very small amounts (%) of components, whose 
presence would be very unlikely in certain compositions.  
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Table 2. The results of a sample with small, but systematically errors 
before and after the application of an expert rule. 

Sample results after:  whewellite weddelite carbonate apatite 
Network processing 8% -7% 99% 
WhWeCap expert rule 0% 0% 99% 
Normalize rule   100% 

 
After addition this rule to the WhWeCap method, the method may be applied for routine 
use in the user part of the program. Usually a few more expert rules have to be added after a 
while. This is because the user will acquire better understanding of possible systematic 
inaccuracies of network results in the coarse of time. Of course this three component 
network model and library is insufficient for normal routine use. Therefore, normally an 
ANN method should be used, which is trained with the most commonly occurring 
components in urinary calculi (about 8 components). In addition to these commonly 
occurring components the library should also be provided with a number of more or less 
rarely occurring components. 
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Appendix E: Specification of the spectra of the library 
 

File name Description of the composition  

C:\WhWeCap\WEDDSYNT.SPC * Weddellite (origin: synthesized) 
C:\WhWeCap\WHEWELIT.SPC * Whewellite (BDH U.N. 2811) 
C:\WhWeCap\CARBONAP.SPC * Carbonate Apatite (origin: synthesized) 
C:\WhWeCap\WHEWED19.SPC Whewellite - Weddellite 10%-90%  
C:\WhWeCap\WHEWED28.SPC Whewellite - Weddellite 20%-80%  

C:\WhWeCap\WHEWED37.SPC Whewellite - Weddellite 30%-70%  
C:\WhWeCap\WHEWED46.SPC Whewellite - Weddellite 40%-60%  
C:\WhWeCap\WHEWED55.SPC Whewellite - Weddellite 50%-50%  
C:\WhWeCap\WHEWED64.SPC Whewellite - Weddellite 60%-40%  
C:\WhWeCap\WHEWED73.SPC Whewellite - Weddellite 70%-30%  
C:\WhWeCap\WHEWED82.SPC Whewellite - Weddellite 80%-20%  

C:\WhWeCap\WHEWED91.SPC Whewellite - Weddellite 90%-10%  
C:\WhWeCap\WECA1090.SPC Weddellite - Carb Apatite 10%-90% 
C:\WhWeCap\WECA2575.SPC Weddellite - Carb Apatite 25%-75% 
C:\WhWeCap\WECA4060.SPC Weddellite - Carb Apatite 40%-60% 
C:\WhWeCap\WECA5050.SPC Weddellite - Carb Apatite 50%-50% 
C:\WhWeCap\WECA6040.SPC Weddellite - Carb Apatite 60%-40% 

C:\WhWeCap\WECA7525.SPC Weddellite - Carb Apatite 75%-25% 
C:\WhWeCap\WECA9010.SPC Weddellite - Carb Apatite 90%-10% 
C:\WhWeCap\WHCA1090.SPC Whewellite - Carb Apatite 10%-90% 
C:\WhWeCap\WHCA2575.SPC Whewellite - Carb Apatite 25%-75% 
C:\WhWeCap\WHCA4060.SPC Whewellite - Carb Apatite 40%-60% 
C:\WhWeCap\WHCA5050.SPC Whewellite - Carb Apatite 50%-50% 

C:\WhWeCap\WHCA6040.SPC Whewellite - Carb Apatite 60%-40% 
C:\WhWeCap\WHCA7525.SPC Whewellite - Carb Apatite 75%-25% 
C:\WhWeCap\WHCA9010.SPC Whewellite - Carb Apatite 90%-10% 
C:\WhWeCap\WWC12127.SPC Whe-Wed-Carb Apatite 12.5%-12.5%-75% 
C:\WhWeCap\WWC12712.SPC Whe-Wed-Carb Apatite 12.5%-75%-12.5% 
C:\WhWeCap\WWC71212.SPC Whe-Wed-Carb Apatite 75%-12.5%-12.5% 

C:\WhWeCap\WWC25255.SPC Whe-Wed-Carb Apatite 25%-25%-50% 
C:\WhWeCap\WWC25525.SPC Whe-Wed-Carb Apatite 25%-50%-25% 
C:\WhWeCap\WWC52525.SPC Whe-Wed-Carb Apatite 50%-25%-25% 
C:\WhWeCap\WWC333.SPC Whe-Wed-Carb Apatite 33%-33%-33% 
C:\WhWeCap\WW82AP82.SPC Whe-Wed-Carb Apatite 62%-16%-22% 
C:\WhWeCap\WW64AP82.SPC Whe-Wed-Carb Apatite 49%-32%-19% 

C:\WhWeCap\WW46AP82.SPC Whe-Wed-Carb Apatite 31%-46%-23% 
C:\WhWeCap\WW28AP82.SPC Whe-Wed-Carb Apatite 17%-63%-20% 
C:\WhWeCap\WW82AP64.SPC Whe-Wed-Carb Apatite 48%-12%-40% 
C:\WhWeCap\WW64AP64.SPC Whe-Wed-Carb Apatite 37%-24%-39% 
C:\WhWeCap\WW46AP64.SPC Whe-Wed-Carb Apatite 24%-36%-40% 
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File name Description of the composition  
C:\WhWeCap\WW28AP64.SPC Whe-Wed-Carb Apatite 13%-47%-38% 
C:\WhWeCap\WW82AP46.SPC Whe-Wed-Carb Apatite 32%-8%-60% 

C:\WhWeCap\WW64AP46.SPC Whe-Wed-Carb Apatite 25%-16%-59% 
C:\WhWeCap\WW46AP46.SPC Whe-Wed-Carb Apatite 16%-24%-60% 
C:\WhWeCap\WW28AP46.SPC Whe-Wed-Carb Apatite 9%-32%-60% 
C:\WhWeCap\WW82AP28.SPC Whe-Wed-Carb Apatite 16%-4%-80% 
C:\WhWeCap\WW64AP28.SPC Whe-Wed-Carb Apatite 13%-8%-79% 
C:\WhWeCap\WW46AP28.SPC Whe-Wed-Carb Apatite 8%-12%-80% 

C:\WhWeCap\WW28AP28.SPC Whe-Wed-Carb Apatite 5%-17%-78% 
C:\WhWeCap\0514-2C.SPC Whewellite-Weddellite 35%-65%  
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Appendix F: Specification of spectra for training and validation of the neural network 
 

 
File name 

Train = 0 
Test = 1 

 
whew 

 
wedd 

 
carb 

C:\WhWeCap\WEDDSYNT.SPC 0 0.0 100.0 0.0 
C:\WhWeCap\WHEWELIT.SPC 0 100.0 0.0 0.0 
C:\WhWeCap\CARBONAP.SPC 0 0.0 0.0 100.0 
C:\WhWeCap\WHEWED19.SPC 0 11.0 89.0 0.0 
C:\WhWeCap\WHEWED28.SPC 0 20.0 80.0 0.0 
C:\WhWeCap\WHEWED37.SPC 0 30.0 70.0 0.0 
C:\WhWeCap\WHEWED46.SPC 0 40.0 60.0 0.0 
C:\WhWeCap\WHEWED55.SPC 0 50.0 50.0 0.0 
C:\WhWeCap\WHEWED64.SPC 0 60.0 40.0 0.0 
C:\WhWeCap\WHEWED73.SPC 0 70.0 30.0 0.0 
C:\WhWeCap\WHEWED82.SPC 0 80.0 20.0 0.0 
C:\WhWeCap\WHEWED91.SPC 0 90.0 10.0 0.0 
C:\WhWeCap\WECA1090.SPC 0 0.0 10.0 90.0 
C:\WhWeCap\WECA2575.SPC 0 0.0 24.0 76.0 
C:\WhWeCap\WECA4060.SPC 0 0.0 40.0 60.0 
C:\WhWeCap\WECA5050.SPC 0 0.0 51.0 49.0 
C:\WhWeCap\WECA6040.SPC 0 0.0 60.0 40.0 
C:\WhWeCap\WECA7525.SPC 0 0.0 75.0 25.0 
C:\WhWeCap\WECA9010.SPC 0 0.0 90.0 10.0 
C:\WhWeCap\WHCA1090.SPC 0 10.0 0.0 90.0 
C:\WhWeCap\WHCA2575.SPC 0 25.0 0.0 75.0 
C:\WhWeCap\WHCA4060.SPC 0 40.0 0.0 60.0 
C:\WhWeCap\WHCA5050.SPC 0 50.0 0.0 50.0 
C:\WhWeCap\WHCA6040.SPC 0 60.0 0.0 40.0 
C:\WhWeCap\WHCA7525.SPC 0 75.0 0.0 25.0 
C:\WhWeCap\WHCA9010.SPC 0 90.0 0.0 10.0 

C:\WhWeCap\WWC12127.SPCx 0 74.0 13.0 13.0 
C:\WhWeCap\WWC12712.SPC 0 13.0 74.0 13.0 

C:\WhWeCap\WWC71212.SPCx 0 13.0 12.0 75.0 
C:\WhWeCap\WWC25255.SPC 0 24.0 25.0 51.0 
C:\WhWeCap\WWC25525.SPC 0 25.0 50.0 25.0 
C:\WhWeCap\WWC52525.SPC 0 50.0 25.0 25.0 
C:\WhWeCap\WWC333.SPC 0 33.0 34.0 33.0 
C:\WhWeCap\MONSTER1.SPC 1 64.0 10.0 26.0 
C:\WhWeCap\MONSTER2.SPC 1 20.0 36.0 44.0 
C:\WhWeCap\MONSTER3.SPC 1 17.0 10.0 73.0 
C:\WhWeCap\MONSTER4.SPC 1 42.0 11.0 47.0 
C:\WhWeCap\MONSTER5.SPC 1 33.0 56.0 11.0 
C:\WhWeCap\MONSTER6.SPC 1 43.0 21.0 36.0 
C:\WhWeCap\MONSTER7.SPC 1 27.0 14.0 59.0 
C:\WhWeCap\WW82AP82.SPC 1 62.0 16.0 22.0 
C:\WhWeCap\WW64AP82.SPC 1 49.0 32.0 19.0 
C:\WhWeCap\WW46AP82.SPC 1 31.0 46.0 23.0 
C:\WhWeCap\WW28AP82.SPC 1 17.0 63.0 20.0 
Etc.     

x compositions interchanged 
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The scope of this thesis was to further develop the assays of fecal fat and urinary calculi. 
The developments mainly consisted of the investigation of the applicability of new infrared 
spectroscopic methods and the application of chemometrical methods for quantification. 
Furthermore, we gave information about the pathophysiology background of our studies. 
 
The quality of some traditional clinical chemical methods needs improvement. Therefore, 
studies were undertaken to develop new methods for the determination of fecal fat and the 
composition of urinary calculi. For these new methods, infrared spectroscopy has been used 
for the determination of the components of interest. To keep the complexity of the 
analytical methods as low as possible, the measurements of the components were 
performed on authentic sample material whenever possible. A drawback of this approach 
was that prediction of the quantity of the sample components was more difficult due to the 
presence of interfering substances in the sample material. Chemometric techniques were 
applied to solve difficulties with the prediction of the chosen component concentrations 
caused by interfering substances. In the majority of the developed methods, the analyte 
concentrations were predicted by means of multivariate calibration methods such as partial 
least-squares (PLS) regression and artificial neural networks (ANN). 
 
The Introduction describes the pathophysiological background, the analytical chemical 
techniques and some post-analytical quantification methods (chemometrics), which may 
provide background information about the analysis of fecal fat and the prediction of the 
composition the urinary calculus. The introduction does not only describe the analytical 
methods that were subject of the studies, but also some related reference methods. The 
interpretation of the results obtained from some analytical methods used in clinical 
laboratories has become more and more complex. This is e.g. caused by the increased 
demand for measurement of analytes in un-pretreated sample material. This has e.g. led to 
the development of the so-called chemometrical methods in the past decades. In our studies 
we applied chemometrics for multivariate calibration of spectral data. For the multivariate 
calibration, we especially made use of artificial neural networks and partial least-squares 
regression. 
 
Part I describes the development of modern analytical methods for the determination of 
fecal fat. The determination of fecal fat is important in the diagnosis of steatorrhea. 
Steatorrhea is a malabsorption syndrome in which the digestion or absorption of dietary fat 
in the gastro-intestinal tract is impaired and which subsequently will lead to increased 
amounts of fat in stool. Emphasis was given to the use of infrared spectroscopy, the 
development of a new reference method and a fast method for the analysis of fecal fat.  
 
Chapter 1 describes the development of a new method for the determination of fecal fat. 
Immediate cause of this study was the finding of a multi-center study that the fecal fat 
results from 28 patient samples obtained with the traditional titrimetric Van de Kamer 
method were different among the hospital laboratories. With the new method, the fatty 
acids were extracted from the stool samples with acidified petroleum ether-ethanol and the 
extracts were dried and dissolved in chloroform. An infrared spectrum was recorded in the 
range from 4000–650 cm–1 using a transmission cell. Standard mixtures of stearic and 
palmitic acids (65:35) were used for calibration. Quantification was based on the 
absorbance band of the CH2 group at 2855 cm–1. The correlation coefficient between the 
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Van de Kamer method and the infrared spectroscopic method was 0.96 (y=1.12x – 0.02, 
standard error of prediction= 0.89 g%). No significant differences were found when the 
infrared results of the 28 fecal samples from patients were compared between three 
different university hospital laboratories. The new infrared method was simple and rapid, 
and provided sufficient intra- and inter-laboratory precision for the diagnosis of steatorrhea. 
 
Chapter 2 describes a further improvement of the method as described in chapter 1. The 
method in chapter 1 described that fecal fat was extracted from stool samples with 
petroleum ether-ethanol. After extraction, the petroleum ether was dried, and the fatty acids 
were redissolved in chloroform before measurement. Because this extraction procedure was 
still rather time-consuming, it was replaced with a single chloroform extraction. The results 
of 111 patient samples were analyzed with the simplified extraction method and evaluated 
by comparing the results with the results of the same samples obtained by the petroleum 
ether-ethanol extraction method. The results of both methods showed good agreement 
(r=0.991, y=1.055+0.24 and a standard error of prediction 0.365 g/%). It was concluded 
that the new simplified extraction procedure for fecal fat determination gives similar results 
to the earlier described extraction procedure and allows considerable reduction in analysis 
time, use of chemicals and technical equipment. 
 
In chapter 3 the applicability of a mid-infrared (MIR) spectroscopic method, using an 
attenuated total reflection (ATR) accessory and a new near-infrared (NIR) spectroscopic 
method for the analysis of fecal fat, were investigated. For the NIR method, sealed plastic 
bags containing the stool samples were used as transmission cells. Standardization was 
obtained by using the infrared method described in chapter 2 as a reference procedure. 
Partial least squares regression was used for calibration of the new methods. Fifteen per 
cent of the stool samples could not be estimated with the ATR method within reasonable 
accuracy limits compared to the reference method. The standard error of prediction of the 
NIR method was 1.1 g%. We concluded that the new NIR method is a promising technique 
for routine use. It was further concluded that further experiments have to be done with 
triplicate measurements of each sample and the use of an external validation set.  
 
Part II describes the development of methods for the determination of the composition of 
urinary calculi. Urinary calculi (renal stones) have plagued man over the centuries. A 
serious problem of renal stones is that they tend to recur. Therefore, the analysis of the 
composition of the calculi is important for proper treatment of patients with urolithiasis, 
especially to prevent the recurrence of stones. In the past, the analysis of urinary stones has 
been performed with tradition wet chemical analysis. This method, however, is inaccurate 
and imprecise. In the past few years, the wet chemical analysis has been replaced by 
infrared spectroscopic methods. Unfortunately, the quantitative assessment of urinary 
calculus constituents by infrared analysis (IR) is hampered by the need of expert knowledge for 
spectrum interpretation. Therefore, we developed post-analytical methods by application of 
some chemometric techniques in order to simplify the determination of the quantitative 
composition of an urinary calculus. We also developed a new infrared spectroscopic 
method. 
 
Chapter 4 describes the development of a post-analytical method for the prediction of the three 
most frequently occurring components of urinary calculi. The method was based on PLS 
regression, which was applied to infrared KBr transmission spectra. The spectra were scanned 
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in the mid-infrared region from 4000–400 cm–1. The calibration set for PLS regression was 
composed of 25 artificial mixtures of whewellite, weddellite and carbonate apatite in different 
proportions. The value of PLS analysis was investigated by the assay of a different set of 
known artificial mixtures, and selected patient samples from which the composition was 
determined by computerized library search followed by visual interpretation of the band 
intensities for a more precise determination of the sample composition. Library search was 
applied by computerized search in several libraries, containing 235 reference spectra from 
various mixtures with different proportions. Compared to this method, PLS analysis was found 
to be superior with respect to accuracy and necessity of expert knowledge. From these results, 
it was concluded that PLS regression is a promising tool for routine quantification, not only for 
whewellite, weddellite and carbonate apatite, but also for other compositions of the urinary 
calculus. 
  
Chapter 5. In the previous chapter it was described that library search still must be followed 
by visual interpretation of the band intensities for a more precise determination of the urinary 
calculus composition. To minimize the need for this last step, an artificial neural network 
model was developed and tested for the quantification of the eight most frequently occurring 
components of urinary calculi. Various samples were used as a training set, by the preparation 
of several binary and ternary mixtures of ammonium hydrogen urate, brushite, carbonate 
apatite, cystine, struvite, uric acid, weddellite, and whewellite. In addition, a number of known 
artificial mixtures were assayed for evaluation, as well as a number of selected patients' 
samples from which the compositions were determined by computerized library search 
followed by visual interpretation. Neural network analysis was found to be more accurate than 
library search and required less expert knowledge because careful visual inspection of the band 
intensities could be omitted. It was concluded that neural networks are promising tools for 
routine quantification of urinary calculus compositions. 
 
Chapter 6 describes the development of a new infrared method for urinary calculus analysis 
that made use of a so-called, Golden Gate sample holding device, and which was equipped 
with a Single Reflection Diamond attenuated total reflection (ATR) crystal for 
measurement of micro samples. An amount of 1–2 mg of carefully pulverized material was 
applied onto the flat surface of the diamond crystal and pressurized before measurement. 
This method was used as a replacement of the traditional infrared method making use of 
KBR tablets. The reason for this was the fact that the preparation of KBr tablets, as applied 
in chapter 4 and 5, is still time-consuming and often hampered by pellet breakage. A 
combination of computerized library search and an artificial neural network (ANN) for 
spectral interpretation was used for the prediction of the sample composition. The library 
was prepared from 25 pure components and 236 binary and ternary mixtures of the eight 
most commonly occurring components. The ANN was trained and validated with 248 
similar mixtures and tested with 92 patient samples, respectively. The optimum ANN 
model yielded Root Mean Square Errors of 1.5% and 2.3% for the training and validation 
set, respectively. Fourteen simple expert rules were added to correct small systematic 
network inaccuracies. Results of 92 consecutive patient samples were compared with those 
of an infrared method with KBr tablets based on initial computerized library search, 
followed by visual inspection. Using Altman and Bland plots, the bias proved significantly 
different from zero for brushite (–0.8%) and the concomitantly occurring whewellite (–
2.8%) and weddellite (3.8%), but not for the other components. The 95% level of 
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agreement of all results amounted to 9%. It was concluded that the new Golden Gate 
method is superior because of its smaller sample size, user-friendliness, robustness and 
speed. Expert knowledge for spectral interpretation is minimized by the combination of 
library search and ANN prediction, but visual inspection remains necessary. 
 
Chapter 7 describes a computer program, called Neuranet, which was especially developed 
for the determination of the quantitative composition of urinary calculi from infrared 
spectra. The spectra had to be measured in the mid-infrared region between 4000–400 cm-1. 
The program was equipped with tools for computerized library search and artificial neural 
network (ANN) prediction. In addition the program contains a subroutine for definition of a 
number of user definable expert rules intended to improve the accuracy of the neural 
network predicted compositions. The network part of this program was a three-layer so-
called back-propagation network that can predict the relative composition of maximally ten 
components in a single sample. Besides a general description of the ‘Neuranet’ program, 
the chapter contains examples of the prediction process of a number of patient samples. In 
addition, the chapter also contains a number of appendices describing the program 
specifications, the development of a Neuranet method (e.g. network training) and a syntax 
description of the expert rules. 
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Opzet van dit proefschrift was het verder ontwikkelen van methodes voor de bepaling van 
vet in feces en het vaststellen van de samenstelling van urinewegstenen. De ontwikkeling 
bestond voornamelijk uit het onderzoeken van de toepasbaarheid van nieuwe infrarood 
spectroscopische methodes en het gebruiken van chemometrische technieken voor het 
kwantificeren van de resultaten. Verder is er informatie gegeven over de pathofysiologische 
achtergrond van de onderzochte studies.  
 
De kwaliteit van enkele traditionele klinisch chemische analyse methoden laat te wensen 
over. Om deze reden hebben wij ons bezig gehouden met de ontwikkeling van nieuwe 
methodes voor de analyse van vet in feces en het vaststellen van de samenstelling van 
nierstenen. Voor de in dit proefschrift beschreven methodes werd gebruik gemaakt van 
infrarood spectroscopie voor het bepalen van de componenten in het patiëntenmateriaal. 
Om de bewerkelijkheid van de methode zo klein mogelijk te houden zijn de metingen zo 
veel mogelijk direct uitgevoerd in het onbewerkte patiënten materiaal. Het nadeel van deze 
aanpak is dat de vaststelling van de gehaltes van de componenten bemoeilijkt wordt door de 
aanwezigheid van storende (interfererende) componenten in het materiaal. Om het 
probleem van de interfererende componenten op te lossen is gebruik gemaakt van 
chemometrische technieken voor het vaststellen van de gehaltes van de gewenste 
componenten. Hierbij is meestal gebruik gemaakt van multivariate calibratie methoden, 
zoals partial least-squares (PLS) regressie en kunstmatige neurale netwerken. 
 
De Introductie beschrijft de pathofysiologische achtergrond, de analytisch chemische 
methodieken en enkele postanalytische kwantificering methoden, met als doel om meer 
inzicht te verschaffen in de analyse van vet in feces en het vaststellen van de samenstelling 
van nierstenen. De introductie beschrijft naast de gebruikte analytische methodes ook 
enkele daaraan gerelateerde referentie methodes. De interpretatie van de resultaten van 
sommige analytische methoden in het klinisch chemische laboratorium is in veel gevallen 
complexer geworden. Dit wordt bijvoorbeeld veroorzaakt door het feit dat er een 
toenemende behoefte bestaat om de gehaltes van de stoffen in het onbewerkte 
monstermateriaal te meten. Dit heeft onder andere weer geleid tot de ontwikkeling van de 
zogenaamde chemometrische methoden in de afgelopen decennia. Voor onze studies 
hebben wij gebruik gemaakt van chemometrische technieken en wel in het bijzonder voor 
de multivariate kalibratie van onze spectrale meetgegevens. Voor de multivariate kalibratie 
maakten wij gebruik van kunstmatige neurale netwerken en ‘partial least-squares’ regressie. 
 
Deel 1 beschrijft de ontwikkeling van enkele moderne analyse methodes voor de bepaling 
van vet in feces. De analyse van vet in feces is van belang voor de vaststelling van de 
diagnose van steatorrhoea. Steatorrhoea is een aandoening waarbij het via de voeding 
genuttigde vet slecht wordt verteerd, of slecht wordt geabsorbeerd in de dunne darm, wat 
vervolgens leidt tot een verhoogde uitscheiding van vet in de feces. Er werd gebruik 
gemaakt van infrarood spectroscopie en er werd een nieuwe referentie methode ontwikkeld. 
Verder werd er een snelle methode voor de analyse van fecaal vet bestudeerd. 
 
Hoofdstuk 1 beschrijft de ontwikkeling van een nieuwe methode voor de analyse van vet in 
feces. Aanleiding van dit onderzoek was de bevinding dat de resultaten van 28 patiënten 
monsters, waarvan het vet in feces was gemeten met de traditionele titrimetrische Van de 
Kamer methode in een drietal Academische Ziekenhuizen, niet goed overeenkwamen. Met 
de nieuwe methode werden de vetzuren geëxtraheerd uit de feces met behulp van een 
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aangezuurd mengsel van petroleum ether-ethanol. Na extractie werd de petroleum ether 
laag gedroogd en werden de vetzuren opgelost in chloroform. Na overbrengen van de 
chloroform in een transmissie cel, werd een infrarood spectrum opgenomen in het 
golflengte gebied van 4000–650 cm–1. Voor de calibratie werd gebruik gemaakt van 
standaard mengsels met oplopende concentraties en bestaande uit de vetzuren stearinezuur 
en palmitinezuur (65:35). De CH2 infrarood absorptie band bij 2855 cm–1 werd gebruikt 
voor de kwantificering. De vergelijking tussen de met de Van de Kamer en de middels 
infrarood spectroscopie verkregen resultaten van 97 patiënten in één van de academische 
centra gaf een correlatie te zien van r=0.96 (y=1.12x – 0.02, standaard schattingsfout 0.89 
g%). Er werd geen significant verschil gevonden wanneer de infrarood resultaten van de 28 
patiënten samples werd vergeleken tussen drie academische ziekenhuis laboratoria. De 
nieuwe methode is eenvoudig en snel uit te voeren en heeft voldoende intra- en 
interlaboratorium precisie om gebruikt te kunnen worden voor de diagnose van 
steatorrhoea.  
 
Hoofdstuk 2 beschrijft een verdere verbetering van de in hoofdstuk 1 beschreven methode. 
Deze methode beschreef de extractie met petroleum ether-ethanol, waarna de vetzuren 
werden heropgelost in chloroform na drogen. Deze methode is nog steeds tamelijk 
tijdrovend en werd vervangen door een enkelvoudige chloroform extractie van het feces 
monster. De resultaten van 111 patiënten monsters werden geanalyseerd met de verbeterde 
extractie methode en geëvalueerd door deze te vergelijken met de resultaten van dezelfde 
monsters die geëxtraheerd waren met de petroleum ether-ethanol methode. De resultaten 
van beide methodes vertoonden een goede mate van overeenstemming (r=0.991, 
y=1.055+0.24 en een standaard schattingsfout van 0.365 g/%). De nieuwe vereenvoudigde 
extractie procedure voor de analyse van vet in feces geeft een aanzienlijke besparing in tijd, 
chemicaliën en te gebruiken apparatuur. 
 
In hoofdstuk 3 werd de toepasbaarheid van de analyse van vet in feces middels een mid-
infrarood (MIR) spectroscopische methode bestudeerd, waarbij gebruik gemaakt werd van 
een zogenaamd ‘attenuated total reflection’ (ATR) accessoire. Verder werd de toepassing 
van een nieuwe ‘nabij-infrarood’ (NIR) spectroscopische methode onderzocht. Bij de NIR 
methode werden dichtgelaste plastic zakjes, met daarin het patiënten materiaal, gebruikt als 
transmissie cellen. Voor de standaardisatie werd gebruik gemaakt van de in hoofdstuk 2 
beschreven infrarood methode als referentie methode. Bij beide nieuwe methodes werd 
gebruik gemaakt van partial least-squares regressie voor de calibratie. Helaas vertoonde 
15% van de patiënten monsters, geanalyseerd met de ATR methode, te grote afwijkingen 
als deze vergeleken werden met de resultaten van de referentie analyse. De standaard 
schattingfout van de NIR methode was 1.1. g%. Geconcludeerd werd dat de nieuwe NIR 
methode een veelbelovende techniek is voor het routinematig analyseren van vet in 
onbewerkte feces. Aanvullende experimenten zijn echter nodig en de methode moet nog 
gevalideerd worden met een externe (onafhankelijke) validatie set, met bij voorkeur triplo 
metingen van ieder monster. 
 
Deel II beschrijft de ontwikkeling van postanalytische methoden voor de analyse van de 
samenstelling van urineweg stenen. De mensheid wordt al eeuwenlang geteisterd door 
urinewegstenen. Een bekend probleem van urinewegstenen is dat ze de neiging hebben om 
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terug te komen na verloop van tijd. Daarom is het van belang om de juiste samenstelling 
van de urinewegstenen vast te kunnen stellen voor een adequate behandeling van de patiënt 
en wel in het bijzonder om herhaling van urinewegsteenvorming te voorkomen. In het 
verleden werd de analyse veelal uitgevoerd door middel van natchemische analyse. Deze 
methode is echter niet erg juist en reproduceerbaar. De laatste jaren is deze methode in veel 
laboratoria vervangen door een infrarood spectroscopische analyse. De interpretatie van de 
spectra van urinewegstenen is echter niet altijd even eenvoudig. Daarom hebben wij 
postanalytische methodes ontwikkeld met behulp van enkele chemometrische technieken 
om het vaststellen van de kwantitatieve samenstelling van de urinewegstenen te 
vergemakkelijken. Verder hebben wij gekeken naar de mogelijkheid van een verdere 
optimalisatie van de infrarood spectroscopische analyse. 
 
Hoofdstuk 4 beschrijft de ontwikkeling van een postanalytische methode voor het 
vaststellen van de samenstelling van de drie meest voorkomende componenten, whewelliet, 
weddelliet en carbonaat apatiet, in urinewegstenen. De methode was gebaseerd op PLS 
regressie van spectra die waren opgenomen met behulp van KBr transmissie tabletten in het 
midden-infrarood gebied (4000–400 cm–1). De calibratie set van de PLS regressie bestond 
uit 25 synthetische mengsels van whewelliet, weddeliet en carbonaat apatiet, ieder met een 
verschillende relatieve samenstelling. De waarde van de PLS methode werd geëvalueerd 
door het analyseren van een afzonderlijke set met synthetische mengsels en met een set 
geselecteerde patiënten monsters waarvan de samenstelling werd vastgesteld via computer 
‘library search’ gevolgd door een visuele beoordeling van de spectrale band intensiteiten 
voor een meer exacte vaststelling van de samenstelling. De library search werd uitgevoerd 
door verschillende bibliotheken te doorzoeken, met daarin 235 referentie spectra met 
verschillende kwalitatieve samenstellingen en in verschillende verhoudingen. Vergeleken 
met deze methode werd PLS regressie beter bevonden met betrekking tot zowel de juistheid 
van de uitslag als de vereiste noodzaak van expert kennis. Er werd geconcludeerd dat PLS 
regressie goed bruikbaar was als postanalytische methode voor routinematige 
kwantificering van de samenstelling van urinewegstenen, niet alleen voor whewelliet, 
weddelliet en carbonaat apatiet, maar ook voor andere samenstellingen van urinewegstenen. 
 
Hoofdstuk 5. In het voorgaande hoofdstuk was reeds beschreven dat library search 
doorgaans gevolgd moet worden door een visuele interpretatie van de band intensiteiten 
voor het vaststellen van de juiste samenstelling van de urinewegstenen. Om de noodzaak 
van deze laatste stap te minimaliseren werd een kunstmatig neuraal netwerk model 
ontwikkeld en uitgetest voor het vaststellen van de samenstelling van de urinewegstenen. Er 
werden verschillende monsters gemaakt voor de training set door het bereiden van binaire 
en ternaire mengsels bestaande uit ammonium waterstofuraat, brushiet, carbonaat apatiet, 
cystine, struviet, urinezuur, weddeliet en whewelliet. Daarnaast werd er een aantal 
kunstmatige mengsels geanalyseerd voor evaluatie, evenals een aantal geselecteerde 
patiënten monsters, waarvan de samenstelling vooraf was vastgesteld met behulp van 
library search gevolgd door een visuele interpretatie van de spectra. De resultaten van de 
neurale netwerk analyse werd meer juist bevonden dan die van library seach en bovendien 
bleek de expertkennis, nodig voor het beoordelen van de spectrale bandintensiteiten, vrijwel 
nooit noodzakelijk. Er werd geconcludeerd dat neurale netwerken goed gebruikt kunnen 
worden voor het routinematige analyseren van de samenstelling van urinewegstenen. 
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Hoofdstuk 6 beschrijft de ontwikkeling van een nieuwe infrarood methode voor de analyse 
van urinewegstenen. Hierbij werd gebruik gemaakt van een zogenaamde ‘Golden Gate 
monsterhouder die uitgevoerd was met enkelvoudige reflectie ATR en geschikt is voor het 
analyseren van zeer kleine hoeveelheden monstermateriaal. De infrarood meting werd 
uitgevoerd na het aanbrengen en onder druk brengen van 1 tot 2 mg zorgvuldig vermalen 
monster op het vlakke oppervlak van het diamant kristal. Deze methode was een 
vervanging van de gebruikelijke methode, die gebruikt maakt van KBr tabletten. 
Aanleiding voor de ontwikkeling van de nieuwe methode was het feit dat de bereiding van 
KBr tabletten, zoals beschreven in hoofdstuk 4 en 5, tamelijk tijdrovend was en bovendien 
bleken de tabletten tamelijk gevoelig voor breuk. Voor het vaststellen van de samenstelling 
van de urinewegstenen werd gebruik gemaakt van achtereenvolgens library search en een 
kunstmatig neuraal netwerk model. De bibliotheek bestond uit referentiespectra van 25 
zuivere stoffen en 236 binaire en ternaire mengsels van de acht meest voorkomende 
componenten in nierstenen. Het netwerk werd getraind en gevalideerd met 248 soortgelijke 
mengsels en vervolgens getest met 92 patiënten monsters. De totale fout van het optimaal 
getrainde netwerk model was respectievelijk 1.5% en 2.3% voor de training en de validatie 
set. Verder werden nog 14 expert regels beschreven om kleine afwijkingen van de neurale 
netwerk uitkomst te corrigeren. De resultaten van de 92 patiënten monsters werden 
vergeleken met de resultaten van spectra geanalyseerd met de KBr methode. De 
samenstelling van de KBr spectra werd vastgesteld aan de hand van library search, gevolgd 
door een visuele beoordeling van de spectra. Door gebruik te maken van Altman en Bland 
grafieken werd alleen een significante afwijking tussen de resultaten van beide methodes 
gevonden voor brushiet (-0.8%) en het gelijktijdig voorkomende whewelliet (-2.8%) en 
weddeliet (3.8%). De gemiddelde afwijking van alle resultaten was 9%. Geconcludeerd 
werd, dat de Golden Gate methode de voorkeur verdiende boven de KBr methode, vanwege 
de kleine hoeveelheid benodigd monster, de gebruikersvriendelijkheid, de robuustheid en 
de snelheid van de analyse. Hoewel de benodigde hoeveelheid expert kennis kleiner was 
dan bij gebruik van uitsluitend library search, werd toch geconcludeerd dat enige visuele 
interpretatie noodzakelijk blijft bij gebruik van de nieuwe methode. 
 
Hoofdstuk 7 beschrijft een programma, genaamd Neuranet, dat speciaal is ontwikkeld voor 
het kwantificeren van de samenstelling van urinewegstenen aan de hand van infrarood 
spectra. Deze spectra moeten gemeten zijn in het midden-infrarood gebied van 4000–400 
cm–1. Het programma is uitgerust met een aantal gereedschappen, zoals library search en 
een neuraal netwerk. Daarnaast bevat het programma een faciliteit waarmee de gebruiker 
een aantal expert regels kan definiëren om de nauwkeurigheid van de netwerkuitkomsten te 
verbeteren. Het gebruikte netwerk bestaat uit drie lagen en is gebaseerd op het zogenaamde 
‘back-propagatie’ principe. Het netwerk model kan in een urinewegsteen de relatieve 
samenstelling bepalen van maximaal tien componenten. Het hoofdstuk bevat naast een 
algemene beschrijving van het programma ook voorbeelden van het vaststellen van de 
samenstelling van een aantal van patiënten afkomstige urinewegstenen. Daarnaast bevat het 
hoofdstuk enkele appendices die de specificaties van het programma beschrijven, zoals de 
ontwikkeling van een Neuranet methode (b.v. netwerk training) en een syntax beschrijving 
van de expertregels. 








